
July 2003 89

W E B T E C H N O L O G I E S

C ertain roles in society carry
with them such a high level of
fiduciary responsibility that
the appropriate organizations
carefully monitor and control

them through licensing, credentials,
and periodic formal review. To the
degree that our personal welfare
depends on such people, we count
trustworthiness the most important
prerequisite of our willingness to com-
mit aspects of our lives and resources
into their hands. For similar reasons,
people expect a high level of trustwor-
thiness before delegating complex and
important tasks to software agents.

IMPORTANCE OF AGENT
TRUSTWORTHINESS

Despite agent researchers’ ever-
increasing energy and enthusiasm,
trust issues remain a major reason for
the agonizingly slow uptake of new
research results in fielded systems.
With rare exception, today’s agents
have not been deployed in critical,
long-lived, secure, or high-risk tasks.
Nor do they undertake missions that
require widespread agent migration or
collaboration among large numbers of
agents interacting in complex, unpre-
dictable ways.

Ideally, agents would be true citizens
of the wired world, equipped with
stamped passports and Berlitz traveler’s
guides that let them hail, meet, and greet
agents of any sort while traversing the
Internet’s open landscape. If not able to
team up on a given project, they would

at least be able to ask intelligibly for
directions. These kinds of agents, alas,
exist today only in our imaginations
(and, of course, in the vision sections of
our research proposals).

Because they can operate indepen-
dently without constant human super-
vision, agents can perform tasks that
would be impractical or impossible
using traditional software applications.
On the other hand, if unchecked and
bestowed upon poorly designed,
buggy, or malicious agents, this auton-
omy could cause severe damage.

Ever more powerful intelligent agents
will differ increasingly from traditional
software, thus we must take into
account the technical and social aspects
of trustworthiness if people are to
accept the agents we design and build.

Key to implementing any trustwor-
thy system is an infrastructure-based
mechanism to monitor and govern
selected aspects of system behavior to
maintain conformance to some set of
desirable constraints or objectives.
Such mechanisms, while independent
of the application components them-
selves, must be under control of some
responsible party. Moreover, they must

be capable of dynamically adjusting
their governing strategies to deal with
changing contexts and priorities.

Traditional systems usually have
dealt narrowly with such concerns, if at
all, by implementing controls relating
to security or safety. Given their
increased degree of potential autonomy,
agent systems raise the bar on the range
of trustworthiness issues that must be
addressed. Virtually any technical or
social aspect of agent behavior that
relates to other agents and the environ-
ment can be of potential interest.

AGENTS AND TRADITIONAL
SECURITY ISSUES

Virtually all aspects of traditional
security concerns are relevant to agent
systems. However, the additional com-
plexity and autonomy of software
agents poses increased security risks.

We need techniques and tools to
assure that agents will always operate
within the bounds of any behavioral
constraints currently in force while
remaining responsive to human con-
trol. For example, hosts should be pro-
tected from fraudulent agents trying to
gain unrestricted access to private-node
information or to perform denial-of-
service attacks through node resource
overuse. Further, agents should be pro-
tected so that malicious information
received from other agents cannot alter
their programmed behavior.

As with any complex system, secu-
rity concerns must inform every phase
of agent application development,
from requirements engineering to
design, implementation, testing, and
deployment. Considering that devel-
opers widely use high-level method-
ologies to support agent requirements
analysis and design activities, we also

Taking Back
Cyberspace
Jeffrey M. Bradshaw, Institute for Human and Machine Cognition
Giacomo Cabri, University of Modena and Reggio Emilia
Rebecca Montanari, University of Bologna

Researchers must find a way
to implement trustworthiness
if people are to stop worrying
and learn how to love agents.

Tacoma does not provide any high-
level means to simplify programming
of mobility strategies for unskilled
developers.

Other approaches, such as the RAM
system, advocate using reflection for
dynamic mobility control of mobile
object clusters. RAM associates each
cluster at the base level with metaob-
jects that control the cluster migration
policies and its binding to resources.
The definition of hooks enables the
jump from the base to the metalevel—
hence, mobility adaptation. However,
hook definition can occur only at com-
pile time, thus precluding adaptation of
mobility strategies to unanticipated cir-
cumstances.

Policy-based approaches to mobility
have also been proposed. For example,
frameworks such as Poema and
Nomads use policies to govern agent
systems’ mobility behavior indepen-
dently of the agent application code.
Such an approach lets system admin-
istrators change policy specifications
on the fly without affecting agent appli-
cation implementation and without
any need to program specific hooks in
advance. The underlying policy infra-
structure handles interpretation and
enforcement of policies at runtime,
transparently to application designers.

Security issues
Adding mobility to agents intro-

duces novel security issues because it
requires protecting agents’ integrity
and secrecy as they travel across mul-
tiple nodes and execute in various envi-
ronments with different trust levels.
Protecting agent integrity requires
either prevention or a posteriori iden-
tification of a malicious execution that
tampers with an agent’s code or state.

To prevent attacks on agent integrity,
some developers rely on special tam-
perproof hardware that avoids unau-
thorized modification of agent code or
state by executing the agent in a phys-
ically sealed environment. Others
attempt to make agent tampering more
difficult by adopting algorithms that
obfuscate the agent’s code and data.

90 Computer

W e b T e c h n o l o g i e s

need high-level approaches to model
and express agent security-related fea-
tures such as privacy, integrity, and
access control.

Policies can control agent execution
at high levels of abstraction. Given the
complexity of the organizations to
which agents belong and the wide
range of actions and abstraction levels
that must be considered in controlling
agent behavior, policy representations
and analysis and inference techniques
tend to be more sophisticated and
dynamic than in traditional systems.

Although policy representations dif-
fer widely in their expressivity, effi-
ciency, and the comprehensiveness of
their associated management tools and
enforcement mechanisms, they tend to
deal with two fundamental policy
statement types: those relating to
authorization, which determines what
an agent is or is not permitted to do;
and those relating to obligation, which
determines what an agent is or is not
required to do.

To facilitate dynamic modification
of security requirements without
affecting the agent code, security solu-
tions must also clearly separate speci-
fications and their implementation
from agent code. Reflection and
aspect-oriented programming offer
two possibilities for achieving this
needed degree of separation.

Adopting reflection would require
splitting the agent system into two lev-
els: the base level, which contains the
agents; and the metalevel, which would
include the rights identified for such
agents and the metaobjects that trans-
parently monitor the agents and decide
whether to grant or deny their
requested actions.

Aspect-oriented programming sug-
gests treating security policies as
aspects to be woven into the agent code
at appropriate join points.
Unfortunately, how and when to per-
form this weaving remains an open
aspect-oriented programming ques-
tion, one that poses a problem analo-
gous to that of base and metalevel
association in reflective systems.

AGENT MOBILITY
Mobile agents are software compo-

nents that can autonomously migrate
across the network while acting on
their users’ behalf. A growing body of
empirical evidence demonstrates the
usefulness of this technology in partic-
ular application contexts.

Specifically, analysts frequently cite
the benefits of flexibility in dealing with
changing network conditions, discon-
nected operation, optimal bandwidth
use, deployment of customized code on
demand, and fault tolerance. For
example, a mobile-agent-based appli-
cation can deploy its components to
the most currently attractive network

locations and redeploy those compo-
nents whenever network or other con-
ditions change, leading to more
efficient use of available resources and
faster completion times.

Mobility programming
Mobility complicates agent design

and development because developers
must decide when and where to
migrate agents. This can be difficult in
current computing environments,
which sometimes prevent making rea-
sonable assumptions about network
topology and node availability.

The complexity of computing opti-
mal migration strategies seems to call
for innovative planning and schedul-
ing technologies, but it remains an
open area with no adequate solutions.

Developers also need runtime envi-
ronments that allow changing mobility
decisions without affecting agent
code—thus separating application logic
from mobility. The programming
model adopted in the Tacoma system,
for example, distinguishes mobility and
management aspects from application
functionality per se. Unfortunately,

Policies can control agent
execution at high levels of

abstraction.

The approaches to agent-integrity
tampering detection propose different
forms of cryptographic encapsulation
of the results of agent computation at
each visited node to be used for subse-
quent verification.

Providing agent secrecy requires hid-
ing the agent’s code and state parts
from the site responsible for its execu-
tion. However, preventing attacks on
agent secrecy is difficult because a
mobile agent that runs inside a foreign
execution environment is completely
at that system’s mercy. No entirely
foolproof general mechanisms exist to
protect mobile agents from inspection.

AGENT INTERACTION
Agents introduce new dimensions to

the long-standing distributed systems
problem of managing complex interac-
tion among loosely coupled compo-
nents. Many of these new dimensions
spring from the decidedly social nature
of agent-agent and human-agent inter-
action. Developers typically model this
interaction on observations of collabo-
ration and competition in the real world.

Further, the diffusion of open systems
in the Internet has led to more complex
interoperability requirements for agent
interactions. Independently developed
agents must be able to rely not only
on shared infrastructure, but also on
shared background knowledge, syntax,
semantics, and pragmatics for agent
communication and collaboration.

In open systems, designers must
always consider that agents represent-
ing the conflicting interests of their
users will game the system to maximize
their own selfish returns. Since open-
agent systems developers will control
the communication and coordination
mechanisms but not the individual
agents, they must carefully design these
mechanisms so that no agent can
exploit its position to unfair advantage.

Controlling data sharing
Different proposals have been

advanced to enable the data sharing
that underlies agent coordination.
These proposals include message pass-

ing, meeting-point abstractions, and
event channels. Some of the most inter-
esting data sharing approaches are
based on tuple spaces. First proposed in
Linda, but with historical affinities to
earlier blackboard approaches, tuple
spaces consist of shared data spaces that
rely on pattern matching to allow access
among uncoupled senders and receivers
in open and dynamic environments.

Novel solutions are starting to
emerge to improve the flexibility of
data sharing control. Systems such as
Tucson and MARS define specific con-
text-dependent rules to adapt tuple
space behavior to the application’s or

environment’s requirements. These
rules are defined independently of the
agents themselves, allowing separate
control of agent interaction.

Role-based approaches represent
another interesting direction in con-
trolling agent interactions. Roles define
common interactions between agents,
such as the interactions between auc-
tioneers and bidders in an auction.
Because it promotes an organizational
view of the system, this approach helps
developers deal with roles separately
from agents.

Four attributes—responsibilities,
permissions, activities, and proto-
cols—define another approach that
exploits roles in the analysis phase. In
Gaia, for example, the interaction
model is a set of protocol definitions.
Each protocol definition relates to a
kind of interaction between roles and
describes the dependencies and rela-
tionships between the different roles.

Conversation policy-based ap-
proaches also exploit recurring pat-
terns among agents in various roles.
Other approaches explicitly code the

interaction issues into the roles that
agents assume and leave the applica-
tion logic in the agents. One such sys-
tem, Brain, uses XML-based notation
to define roles as sets of actions and
events. Another, ROPE, considers
cooperation processes first-class enti-
ties that define how the involved roles
interact with each other.

Teamwork
In many situations, roles and inter-

action patterns are fixed in advance or
can be easily discovered. In others,
however, explicit reasoning about
agent interaction at runtime is essen-
tial. For example, teamwork has
become the most widely accepted
metaphor for describing the nature of
multiagent cooperation.

Most approaches depend on the key
concept that shared knowledge, goals,
and intentions function as the glue that
binds team members together. A
largely reusable explicit formal model
of a team’s shared intentions, general
responsibilities, and commitments
coherently manages these interactions
and facilitates recovery when unantic-
ipated problems arise. For example, in
a general- teamwork model, if one
team member fails and can no longer
perform its role, each team member
would be notified of the failure. This
approach reduces the requirement for
special-purpose exception handling
mechanisms for each possible failure
mode.

While early research on agent team-
work focused mainly on agent-agent
interaction, developers are increasingly
interested in various dimensions of
human-agent interaction. Unlike
autonomous systems designed primar-
ily to take humans out of the loop,
many new efforts specifically focus on
supporting close and continuous
human-agent interaction. Use of inde-
pendent policy management mecha-
nisms is becoming increasingly popular
as a means of implementing reusable
agent-agent teamwork models and
enabling effective and natural human-
agent interaction.

July 2003 91

The Internet has led
to more complex agent

interoperability
requirements.

92 Computer

S ecurity, mobility, and agent inter-
action can benefit from infrastruc-
ture-based governing mechanisms.

Various solutions are becoming avail-
able to simplify agent analysis and con-
trol issues, independently from the
agent application’s core logic. Ideally,
more uniform and interoperable
approaches can eventually replace the
plethora of current offerings adn
enable many potential benefits:

• agents can interact more effec-
tively;

• administrators can be assured that
agent behavior conforms to desired
constraints and objectives, even in
the face of buggy or malicious code;

• users can be better aware of the
agent’s key state and intentions;
and

• developers—their job simplified
through independent manage-
ment of security, mobility, and
agent-interaction logic—can turn
their focus to application logic.

Thus empowered, everyone can stop
worrying about trustworthiness and
start loving agents. ■

Jeffrey M. Bradshaw is a research sci-
entist at the Institute for Human and
Machine Cognition, University of West
Florida. Contact him at jbradshaw@
ai.uwf.edu.

Giacomo Cabri is a research associate
at the Department of Information
Engineering, University of Modena
and Reggio Emilia. Contact him at
giacomo.cabri@unimo.it.

Rebecca Montanari is a research asso-
ciate at the Department of Information
and Systems Electronics, University of
Bologna. Contact her at rmonta-
nari@deis.unibo.it.

W e b T e c h n o l o g i e s

Editor: Sumi Helal, Computer and Informa-
tion Science and Engineering Dept., Univer-
sity of Florida, P.O. Box 116125, Gainesville,
FL, 32611-6120, helal@cise.ufl.edu

