Trust Negotiation as an Authorization Service for Web Services

Lars Olson, Marianne Winslett

University of Illinois at Urbana-Champaign

{leolsonl,winslett} @cs.uiuc.edu

Nathan Seeley
Brigham Young University

Abstract

Like other open computing environments, web services
need a scalable method of determining authorized users.
We present desiderata for authorization facilities for web
services, and analyze potential ways of satisfying them. We
propose a third-party authorization system for web services
based on trust negotiation, discuss its implementation using
the TrustBuilder runtime system for trust negotiation, and
present performance results from a stock trading applica-
tion.

1 Introduction

As web services become more widely used in open dis-
tributed systems, the need for security enforcement is ap-
parent. The security needs can potentially include guaran-
tees of confidentiality, integrity, authentication, authoriza-
tion, availability, auditing and accountability. In this paper,
we will focus on the authorization-related needs of appli-
cations relying on web services. The desiderata for such
an authorization facility will depend on the application, and
may include:

Openness: The authorization facility should allow qual-
ified strangers to obtain authorization to access resources.
An open system cannot rely on traditional distributed sys-
tems authorization facilities based on identity. For example,
authorization facilities based on logins and passwords will
not be suitable, because strangers will not have a login at
the service they wish to access.

Corporate- and Shibboleth-style authorization services
for an organization rely on X.509 identity certificates (or
a similar authentication substrate) backed up by the orga-
nization’s LDAP servers, which know about each identity’s
attributes (e.g., employee names and positions). This archi-
tecture allows the LDAP servers to store an arbitrary set of
properties about the identities within the organization, al-

Gianluca Tonti
Universita di Bologna, Italy

Andrzej Uszok, Jeffrey Bradshaw
Institute for Human and Machine Cognition, Pensacola, Florida

lowing support for attribute-based authorization. However,
this architecture is still not sufficiently open to meet our re-
quirements. First, the set of attributes that a client may pos-
sess is predetermined and static. In an open system, one
cannot predict all the resources a client might wish to ac-
cess, nor the associated authorization requirements. Sec-
ond, the client must have a previous relationship with an
organization that records the client’s attributes. Further,
that organization must have a previously established trust
relationship with the owner of the resource, specifying that
the resource owner is willing to accept attribute attestations
from that organization. In an open system, those relation-
ships may not exist.

The authorization service should support the establish-
ment of bilateral trust. Traditional distributed system secu-
rity assumes that the client trusts the server a priori, but the
server does not trust the client. For a truly open system, the
client also needs to have a way to ask the server to prove
that it can be trusted.

Ease of management: The authorization service must be
easy to deploy, both for initial setup and subsequent mainte-
nance. Legacy applications must be able to use the new au-
thorization system. Application owners need support tools
to help them understand their own authorization policies
and understand the effect of proposed updates to their poli-
cies.

Confidentiality: First, the authorization service should
allow users to retain control over the disclosure of their at-
tributes to other parties. Similarly, resource owners should
retain control over the disclosure of the authorization poli-
cies for their resources, as those policies may be sensitive.
Second, other parties should not be able to eavesdrop and
learn about disclosed attributes or sensitive service requests.
Third, portions of the run-time authorization conversation
must be kept private to prevent security breaches (e.g., pass-
words must not be transmitted in the clear).

Universality: A general-purpose authorization system
should not impose excessive restrictions on the layers be-

neath it. It should be capable of supporting a variety of
authorization policy languages, since no single language
can meet the needs of all resource owners equally well. It
should also work with many different kinds of credential
and identity systems. For example, it should not require
all attributes to be certified via X.509 certificates (though
a resource owner can impose such a condition). Ideally, if
a resource owner’s policy deems an information source to
be trustworthy with respect to a particular attribute, then
the system should be able to accept any form of verifiable,
unforgeable, nonrepudiable attribute statements from that
source.

Integrity: It must not be possible to corrupt a message
undetectably during the authorization conversation.

Availability: The authorization service should be highly
available, as the applications that rely on it will become un-
available if the authorization service is unavailable. First,
the authorization service must scale well as the number of
resource owners and potential and actual users increases.
This implies that the authorization service should not im-
plement identity-based solutions (e.g., local accounts for
all potential users), as they impose large management over-
heads as the number of potential users increases. It is im-
practical to expect one organization to closely track mem-
bership changes in another organization. Second, the autho-
rization service should react gracefully to heavy loads and
be resilient against denial of service attacks.

Auditing and accountability: Identity-based authoriza-
tion systems can use tamper-resistant logs to provide strong
guarantees of accountability and support after-the-fact au-
dits. This is more of a challenge in attribute-based trust
management systems. If a client presents a certificate, then
in practice that certificate will contain a unique identity for
that client within the issuing domain. If the client subse-
quently misbehaves, it may be hard to obtain cooperation
from the issuing domain to track down the client and hold
her accountable for her behavior. Most proposals for anony-
mous credentials do not include a means of subsequently
identifying the client if necessary.

Autonomy: First, each resource owner should have the
right to declare its own authorization policy for access
to that resource. For example, clients should not be ex-
pected to divulge their attributes without possibly request-
ing proofs of trustworthiness from the recipient of that in-
formation. Second, negotiating parties may have a vari-
ety of strategic goals. For example, a client might want
to get access to the resource as quickly as possible, while
the resource owner might want to collect as much informa-
tion about the client’s attributes as possible before grant-
ing access, for marketing purposes. The authorization ser-
vice should allow its clients and resource owners reason-
able leeway in pursuing their own strategic agendas. Third,
trust establishment approaches that require participants to

adhere to a rigid algorithm are relatively easy to attack. The
attacker can extract irrelevant information from the other
party, crash the other party, or launch a denial of service at-
tack by not following the algorithm. Increased autonomy
in the runtime procedures appears to lessen vulnerability to
attack.

The web services community has generated dozens of
draft standards related to authorization and other aspects
of security, such as WS-Policy, SAML, and XMLDSIG.
From the proliferation of standards, one could be forgiven
for thinking that web services security is a solved problem.
In reality, however, each standard specifies a small build-
ing block for the overall security edifice. An authorization
service designer needs to choose which standards to use in-
ternally and for its input and output.

While the desiderata are surely incomplete (we can-
not envisage the authorization needs of all future appli-
cations), they still help us to evaluate the suitability of
authorization approaches for web services. We imme-
diately see that traditional authorization solutions—such
as RADIUS (www.gnu.org/software/radius/radius.html),
Kerberos (web.mit.edu/kerberos/www), and identity- or
organization-based public key infrastructures (PKIs)—do
not meet the scalability and openness desiderata, as they re-
quire authorized users (or their organizations) to be known
a priori. Instead, we advocate the development of a se-
curity middleware service that employs trust negotiation,
an attribute-based authorization approach designed for open
systems. In trust negotiation, access policies for resources
in the system are written as declarative specifications of the
attributes that authorized users must possess. Entities in
the system possess digital credentials issued by third par-
ties that attest to their attributes, along with policies that
limit access to their sensitive resources and credentials. The
trust negotiation process allows credentials and policies to
be disclosed between parties in a bilateral and iterative man-
ner that incrementally establishes trust. As explained in the
next section, authorization services based on trust negotia-
tion have the potential to satisfy all of the desiderata listed
above.

Our proposed authorization approach uses trust negoti-
ation to broker access tokens for web services deployed in
the system. In our approach, web services handlers [14]
are used to detect service requests for which these types of
access tokens are needed. After detection, the handler in-
vokes a trust negotiation facility to negotiate for access to
the specified service. Because these handlers are interposed
between the human user and the deployed services, nego-
tiations take place automatically, without requiring user in-
tervention. In our implementation of this architecture, we
leverage the TrustBuilder framework for automated trust
negotiation and use existing web services standards such as
XMLDSIG to encode and process the access tokens gener-

ated after successful negotiations take place.

In the remainder of the paper, Section 2 explains how
trust negotiation has the potential to satisfy the desiderata.
Section 3 describes a web service for stock purchases and its
authorization needs. Section 4 presents performance mea-
surements of our third-party authorization service based on
TrustBuilder, and Section 5 describes related efforts.

2 Trust Negotiation

For a verifiable, unforgeable, nonrepudiable proof that
an entity possesses a certain property, trust negotiation re-
lies on digital credentials issued by third parties. For ex-
ample, a company could use X.509 attribute certificates for
digital employee IDs that list employee numbers, names,
and departments. At run time, an entity mentioned in a cre-
dential can prove that it is the mentioned entity, typically
by demonstrating knowledge of a private key correspond-
ing to a public key that appears in the credential. Trust ne-
gotiation can use any kinds of digital credentials, including
anonymous credentials.

When an organization wishes to share a resource with
outsiders, it can create an authorization policy that describes
the attributes that authorized users must possess. For exam-
ple, a policy might specify that access is limited to IBM
employees, companies that supply WalMart with merchan-
dise, parents of kindergarteners in Texas, or nurses work-
ing for doctors who are treating a particular patient. Often
the credentials themselves will contain sensitive informa-
tion (e.g., a social security number in a driver’s license), in
which case they should also be protected by authorization
policies. When credentials are sensitive, their disclosure
may require the recipient to produce certain credentials first.
During a trust negotiation, the negotiating parties iteratively
disclose increasingly more sensitive credentials, until either
the authorization policy is satisfied or one party gives up.

Figure 1 shows an example trust negotiation. Alice has
a broker ID credential, protected by a policy that requires
a certificate from the SEC showing that the holder is au-
thorized as a stock exchange. Bob is a stock exchange that
offers an internet-based exchange service to stock brokers.
Bob’s authorization policy for the service requires that the
customer present a current broker ID from a recognized bro-
kerage firm. A negotiation is triggered when Alice tries to
access the service. Bob responds by sending Alice the au-
thorization policy that protects this service. Alice can sat-
isfy this policy with her broker ID, but she is not willing
to disclose that credential to Bob, because its authorization
policy is not yet satisfied. Bob has no way to know her pol-
icy a priori, so Alice sends her broker ID policy to him.
Bob can satisfy this policy; he sends Alice his certification
issued by the SEC, which he does not consider sensitive.
Along with that credential, he sends a proof that he owns

the certificate. The policy that protects Alice’s broker ID
is now satisfied, so she sends it to Bob, along with a proof
that she owns it. The authorization policy for the exchange
service is now satisfied, so Bob grants Alice access.

Authorization services based on trust negotiation have
the potential to satisfy all of the desiderata listed in the pre-
vious section:

Openness: Trust negotiation easily satisfies the openness
requirements. Attribute-based authorization policies only
need to be modified when the authorization criteria for a
resource itself changes, and these criteria need not involve
frequently-changing lists of identities of individuals or or-
ganizations. The bilateral, iterative nature of trust negotia-
tion allows both parties to establish trust in the same way.

Ease of management: Current policy engines do not sat-
isfy this desideratum, though future trust negotiation sys-
tems can do so. Additionally, the authorization service de-
scribed in this paper can be adapted to legacy trust-unaware
applications, thus lowering the barrier for adoption.

Confidentiality of attributes and policies: Because cre-
dentials can themselves be considered sensitive resources
and be protected by policies, trust negotiation supports con-
fidentiality for sensitive attributes. The policies themselves
may be sensitive, so that directly exchanging policies is not
desirable. Trust negotiation supports protecting sensitive
policies in the same manner as sensitive attributes.

Universality: Trust negotiation does not require the use
of one particular kind of digital credentials, and can be used
with anonymous credentials and zero-knowledge proofs of
properties [15]. If the need arises for an unrecognized cre-
dential type, either party should be able to (for instance)
download the proper credential parsing and verification
package.

Integrity and confidentiality: Trust negotiations can be
conducted over a secure channel, such as an SSL/TLS con-
nection, to provide integrity and confidentiality for the con-
versation. (This connection is not based on any trust at-
tributes; it only provides confidentiality against eavesdrop-
pers, and can be set up using one-time-use self-signed cer-
tificates.)

Availability: Researchers have proposed ways to make
implementations of trust negotiation resilient against at-
tacks, especially denial of service (DoS) attacks [17]. Cur-
rent trust negotiation implementations have not made scal-
ability a major goal; future implementations should do so.

Auditing and accountability: Trust negotiation activity
can be logged in a tamper-evident logging facility. How-
ever, in the case of zero-knowledge proofs of properties and
anonymous credentials, the log may not be very helpful in
tracking down individuals who behave inappropriately.

Autonomy: It is possible to implement trust negotiation
in a manner that preserves the autonomy of parties in mak-
ing strategic run-time decisions [22]. Again, current imple-

Step 1: Alice requests a service from Bob

Bob

C-registey,
@ xchangeeV

§09

Access to stock

?

1
(3.4

Step 2: Bob discloses his policy for the service

g
o
o
Step 3: Alice discloses her policy for her Broker ID §
3
Qt(;f‘egister 2
@ xchangeeo’ Step 4: Bob discloses his SEC registration
$3 [——]
Step 5: Alice discloses her Broker ID credential REC it
ID #5655-55-5555
L
Access 1o stock Step 6: Bob grants access to the service »

Figure 1. Example of trust negotiation

mentations have not fully addressed this.

Several trust negotiation prototypes have been built to
date, including Cassandra [2], idemix [9], QCM [7], SD3
[10], PeerTrust [16], SPKI/SDSI [6], TrustBuilder [20], and
Trust-X [3], with others proposed or under development.
Since trust negotiation is a new idea, these are all early
prototypes that satisfy only a few of the desiderata. Their
current implementations either have relatively limited func-
tionality or rely on policy languages or credential types that
are not appropriate for our purposes, with two exceptions:
TrustBuilder and Trust-X.

TrustBuilder [20] supports the iterative establishment of
bilateral trust and provides confidentiality for sensitive at-
tributes. TrustBuilder does not itself provide confidentiality
of conversations, but can be run over SSL/TLS for that pur-
pose. TrustBuilder has been tested with two different policy
engines, one based on the RT policy language and the other
on IBM’s Trust Engine (TE), which uses IBM’s Trust Policy
Language (TPL). The publicly available version of Trust-
Builder supports IBM’s TE, which imposes its own limita-
tions on the system, including a reliance on X.509 creden-
tials. In practice, this and the other restrictions in the cur-
rently available version mean that TrustBuilder has limited
autonomy for users (only an eager strategy for disclosures is
currently supported), though planned support for additional
policy engines will relieve this problem. An unreleased ver-
sion of TrustBuilder sports increased resilience against at-

tack [17], while an earlier version is available for down-
load over the internet at http://isrl.cs.byu.edu. TrustBuilder
has been applied to distributed authorization scenarios us-
ing Java-RMI, TLS, and HTTP proxies (among others).

Trust-X [3] offers an XML-based framework for trust ne-
gotiation that supports the establishment of bilateral trust,
provides confidentiality for sensitive attributes and policies,
and provides tokens to represent the successful outcome of
negotiations. Trust-X supports additional useful kinds of
policies, such as P3P privacy policies to limit redissemi-
nation of information disclosed during negotiation. Trust-
X supports the autonomy of negotiating parties in making
strategic decisions, by providing five different kinds of ne-
gotiating strategies that differ in how suspicious the party is
of its partner.

Our implementation of an authorization service for web
services uses the TrustBuilder prototype. We expect that
similar design issues and considerations would hold for an
implementation based on Trust-X.

3 Stock Trading Scenario and Authorization
Architecture

Suppose that we are operating a stock exchange over a
web services platform. Careful auditing, timely service, and
message integrity are necessary for such a system. Mes-
sages containing stock quotations and other information re-

lated to stock purchases and sales should be readable by
independent auditors who track the operations, discourag-
ing unethical or illegal transactions like insider trading.
Figure 2(a) shows an example interaction where the client
wishes to purchase 500 shares of stock from company ABC.
The server makes the purchase at the current price, makes
the money transfer, and reports back to the client that the
transaction was successful. An open authorization system
is appropriate for such a scenario, so that broker companies
retain control over the certification of their own employ-
ees without requiring the exchange server itself to register
and keep track of individual employees. Each broker com-
pany can decide who its employees are, issue them appro-
priate credentials, and define appropriate policies to protect
its own credentials from inappropriate disclosure.

One potential architecture for web services authoriza-
tion is to embed authorization facilities directly in web ser-
vices clients and servers. However, this would involve du-
plicating the authorization-related code and trust negotia-
tion functionality in every web service and client that needs
it. This would require future upgrades to the authorization
package to be installed in all clients and servers, and would
clutter the main code of the web service with authorization-
related considerations.

To avoid these problems, we chose to build a stand-alone
third party authorization service that can be shared by mul-
tiple web services. To provide these properties, and to al-
low legacy applications to be adapted to the authorization
service, we defined handlers [14] to implement the trust ne-
gotiation and authorization process. A handler is a stand-
alone piece of code that does text processing on a SOAP
message that has been created by a web service client or
server. The possible types of text processing range from
simply logging messages that pass through, to adding el-
ements to the SOAP message, to interrupting delivery of
messages. Several handlers can be combined in a manner
reminiscent of a network stack, where each layer can be de-
fined independently. This way, the main client and server
code can focus on the core functionality of the web service,
leaving such issues as authorization and logging as abstrac-
tions that can be managed separately. Multiple clients or
servers can include their respective authorization handlers
in the handler chains, reusing the same authorization code
rather than duplicating effort. This approach also gives us
the added benefit of adding trust-negotiation capability to
legacy applications, with very little modification of the ap-
plications. We define one handler to run on the client side
(on the same machine as the client code), and another for
the server side (with the server code).

One design option is to embed the authorization-related
software in the web service’s handler, so that the stock trad-
ing client carries out a trust negotiation directly with the
handler. We envision, however, that the stock trading ser-

vice could be part of a larger suite of services, all of which
could require a trust negotiation to determine authorization.
Thus there are advantages to separating out the trust nego-
tiation software from the server-side handler itself. If the
stock exchange expects to have a high volume of authoriza-
tion requests, then the need for timely response to quotation
requests suggests that it might be desirable to run the au-
thorization software as its own dedicated server, possibly
on its own dedicated hardware, with the stock exchange’s
certificates and policies cached locally. If needed, the au-
thorization service can be replicated for availability and to
increase scalability. We chose to embed the client-related
authorization code, which primarily consists of the trust ne-
gotiation module, in the client’s handler.

Our final design is shown in Figure 2(b). The stock mar-
ket server agrees with the authorization server on a long-
term cryptographic key to verify the validity of the mes-
sages it receives. The client makes a request to purchase
stock, and the client’s handler detects that this request re-
quires authorization. The client’s handler contacts the stock
exchange’s authorization server and carries out a trust ne-
gotiation with the authorization server. The client also gen-
erates a public/private key pair for the stock server to verify
the client’s messages. If the negotiation succeeds in estab-
lishing trust, the client’s handler is given a signed trust token
that contains the client’s public key and records the autho-
rization that was granted, namely, that the client is allowed
to purchase stocks on the exchange. The client’s handler
then transmits the client’s purchase request to the server,
with the token attached to the message. The server’s handler
verifies the token with the authorization server’s key, veri-
fies the rest of the message with the client’s key (embedded
in the token), and executes the stock purchase operation if
the token is valid for purchase operations performed by that
client.

The application server must trust the authorization server
on the following points: (1) the authorization server en-
forces the correct policy protecting the application server,
which it certifies by including the client’s authenticated role
in the trust token; (2) it verifies the client’s credentials cor-
rectly (including revocation checks); (3) it protects the cryp-
tographic key for signing the trust tokens; (4) it does not
give the trust token a lifetime longer than any of the client’s
credentials used to gain authorization; and (5) it revokes the
tokens for previously authenticated clients if the server pol-
icy changes.

4 Implementation and Evaluation

Since IBM’s TE policy engine in TrustBuilder already
relies on X.509 certificates, it makes sense for the autho-
rization server to issue an X.509 certificate as the trust to-
ken given to a newly authorized client. This has the advan-

purchaseStock(ABC, 500)

Client Server
code code

500 shares of ABC
purchased at $50 per share

(a) Example purchase request and response

~—— Server

Server
code

Client

Client
code

| purchaseStock(ABC, 500) [T

Ia[puey
Io[puey

500 shares of ABC
purchased at $50 per share

I
\

- _J

N\

Agree on
certificate
verification keys

TrustBuilder
Service

(b) Authorization service architecture

Perform trust
negotiation

Figure 2. Stock purchase scenario

tageous side effect that the creation of the X.509 certificate
involves the generation of a private key for the web service
client that its handler can use to sign the purchase messages
that it sends to the stock exchange, thereby guaranteeing
message integrity. Further, the token can be transmitted in
the clear without fear of use by unauthorized parties, be-
cause only the stock purchase client’s handler can prove
ownership of the private key. Other reasonable options for a
token include a Kerberos ticket, a signed SAML assertion,
or a WS-Security token that can be issued and checked in
accordance with WS-Trust.

Stock purchase messages and responses are sent over an
unencrypted channel. A digital signature on a stock pur-
chase request/response, as defined in the SOAP-dsig [19]
or XMLDSIG [21] standards, will allow the recipient of a
message to determine whether the message has been tam-
pered with. The use of a secure channel (SSL/TLS) for the
purchase and response messages would provide purchase
confidentiality, but would hide the interaction from third-
party auditors.! In our implementation, we chose to send
purchase and confirmation messages in plaintext, to allow
third party tracking of purchases. To guarantee integrity of
purchase requests, they are signed. To keep the prototype
simple, we do not guarantee message integrity on purchase
responses; however, we could have designed it to do so in
much the same way as the client signs its requests.

An attacker might try to replay a signed stock purchase
message or response. Such an attack could trick the ser-

IThe cipher negotiation in SSL/TLS does allow integrity protection
without encryption, and is likely to be faster than XMLDSIG-based in-
tegrity. Unfortunately, this will not reduce the running time of the trust-
negotiation phase, which is the bottleneck in our scenario. It would also
require integration between the application layer (the TrustBuilder ticket)
and the transport layer (SSL).

vice into executing the same purchase operation multiple
times. To address this, we have the stock purchase client
add a sequence number to the security header of the SOAP
message, and the stock purchase server remembers the high-
est sequence number of a message that has been sent with
each received token. During a replay attack, the stock pur-
chase server will detect a duplicate sequence number and
can reject the message. (If the attacker modifies the se-
quence number, the message signature will not match and
the server can still reject the message.) To prevent an over-
load of state space information at the stock purchase server,
the stock purchase server sets a limit on the number of times
a valid token can be used, and requires the client to renego-
tiate with the authorization service to receive a new token
when the maximum number is reached.

Finally, an attacker might gain control of a machine be-
tween the client and the server. The digital signature on
purchase messages and responses prevents message mod-
ification, but an attacker could also hold a request indefi-
nitely, then send it on when it might have unintended con-
sequences. For example, an attacker might intercept a pur-
chase order and hold it until the price of the stock rises in
order to raise more funds for the company, or intercept a
sell order and wait until the price of the stock falls in or-
der to purchase those shares himself at a better price. To
prevent this, we add an expiration timestamp to the mes-
sage. This will not guarantee that the message arrives in
time, so the client will need contingency plans in this case,
just as though the network were unavailable. The timestamp
will, however, prevent any future damage. Similar problems
can occur in the non-digital world, which is why stock pur-
chase/sale requests often have a price limit or an expiration
time built into the request.

To determine how much overhead trust negotiation adds

to a typical system, we measured the performance of a web
service that simulates stock purchases. The web service
takes two parameters (a text string representing the com-
pany ticker symbol, and an integer representing the num-
ber of shares) and returns a text string indicating whether
the transaction succeeded. Thus the experiments essentially
show the time spent in the authorization step, as they omit
the time that would be required to actually purchase a stock,
sign the purchase response, or set up a secure channel for
the purchase. Every request to the web service and autho-
rization server is for a stock purchase, and every request is
eventually authorized.

To determine the effect of client and server policy com-
plexity on authorization time, we varied the number of
rounds in the negotiation. In particular, we modified the
policies to require between one and ten iterations of the ne-
gotiation before trust was established. In each iteration, the
client or server discloses a single credential. For its effect
on performance, this is the worst-case scenario, as it max-
imizes the number of message rounds per credential dis-
closure. In the real world, we expect most negotiations to
involve only one or two rounds of disclosures. However, it
is important to understand the system’s behavior with addi-
tional rounds of disclosures, as that is one potential avenue
of attack.

The experiments ran on a Pentium 4 with 1 GB RAM
running at 2.8GHz with Windows XP, the Apache Tomcat
Server v5.0 with JDK/JWSDP v1.5, and TrustBuilder. The
client and the server connected to each other through Java
sockets. To eliminate network transmission times from the
experiments, we ran both the client and the server on the
same machine, although they connected to one another in
the same manner as if they were on separate machines. To
eliminate any caching effects, the client and server were
both restarted after each purchase request and response (ex-
cept for the double-purchase runs described below).

The experiments measure the total elapsed time from the
initial purchase request creation at the client to the receipt
of the confirmation at the client, for each level of policy
complexity. To show the cost associated with using a se-
cure channel to provide credential and policy confidential-
ity, the experiments include measurements with and without
an SSL/TLS channel to the authorization server. The exper-
iments with the secure channel include the time to set up the
channel for each purchase request.

The experiments evaluate the cost of a single purchase
request, including the authorization step, and also the cost
of doing two purchase requests, where the second purchase
request reuses the trust token that was generated for the first
request. More precisely, during the second purchase re-
quest, the client’s handler finds that it already has a token. It
attaches the token to the client’s request without contacting
the authorization service, and forwards the message with

token to the stock purchase web service. The web service’s
handler verifies the token and then passes the message to
the stock purchase service.

Figure 3 shows the results of the experiments. Overall,
the cost of obtaining a token using trust negotiation is high.
The simplest form of trust negotiation (one client credential
disclosed) takes 7 seconds, and each additional round of ne-
gotiation, with one additional disclosed credential, adds .5
seconds. The figure shows that the overhead for using a se-
cure channel to communicate with the authorization server
is noticeable, but still small (always less than .5 second)
compared to the overall run time. When the client does two
purchases in a row, the cost of attaching the token to the sec-
ond request and having it verified is quite reasonable (less
than .25 second).

Overall, the performance of TrustBuilder with TE is in-
adequate: 7 seconds is too long for a simple authorization
request. We believe that this cost needs to be lowered, even
though the following factors would tend to improve perfor-
mance in real-world applications: (1) The high cost of ob-
taining a token would be amortized across many subsequent
uses of the token in real life. (2) We would also expect to see
benefits from caching of the stock purchase server’s poli-
cies and credentials at the authorization server, which the
experiments explicitly excluded across separate runs. (3)
The policies in the experiments were designed to prolong
the negotiation as much as possible—sending multiple cre-
dentials in one negotiation round will decrease the latency.
As no researchers have addressed scalability issues for trust
negotiation to date, there is surely much more that can be
done to improve performance, compared to today’s proto-
types for policy evaluation and credential verification.

Beyond performance concerns, we found two other is-
sues that should be addressed before trust negotiation can
be deployed in critical applications. First, the ease of use
of the technology needs improvement. We found that the
process of writing TPL policies for the IBM TE engine was
quite awkward, and demanded most of the coding time. Pol-
icy languages are an area of active research, and we encour-
age researchers to address language usability issues. We
also found the tools for assembling and installing applica-
tion scenario policies and credentials to be fragile and hard
to use, with the result that the experiments took much longer
than expected to set up. We encourage researchers to con-
sider these aspects as well when creating policy manage-
ment tools.

Second, we had concerns about the internal workings of
TE. As TE is a closed system, we were unable to see how
TE addresses such performance-, correctness-, and DoS-
related issues as caching previously verified certificates,
checking certificate chains, and requesting certificate revo-
cation lists. We concluded that it is preferable to be able to
examine the source code for a policy evaluation engine that

12 q

10

——1 Operation

-m— 2 Operations
—4— 1 Operation with SSL

Time to execute (sec)
@

0 T T T
0 2 4 6

8 10 12

Number of certificates exchanged

Figure 3. Performance results for the stock purchase scenario

is to be used in an open-systems authorization service.

The token-based approach may present opportunities for
DoS attacks. One potential area of concern is the amount
of time required to verify a trust token. Assuming that
the authorization service’s public key is already known, the
stock purchase web service will still need to verify the stock
client’s trust token with the authorization service’s public
key, check the certificate revocation list of the authorization
service (if one exists), verify the XMLDSIG signature of the
stock purchase message, and check the sequence number
and message expiration of the stock purchase message. As
any third-party authorization service will require many or
all of these steps, it will be important to minimize their cost,
especially for invalid purchase requests. While the cost of
these actions was reasonable in our experiments (less than
.25 second), the cost could add up quickly if many clients
attempted to buy stocks simultaneously.

Another opportunity for a DoS attack lies in the state
information (the last sequence number) that the stock pur-
chase service keeps for each valid trust token. State infor-
mation is only kept for valid tokens, so a denial-of-service
attack that tried to flood the server with additional valid to-
kens could be traced back to the attacker by logging the cre-
dentials the attacker presented at the authorization server.
The amount of state information could be tuned dynami-
cally by adding a temporal limit on the validity period of
newly issued trust tokens; if the stock purchase server is
overloaded with state information, it could ask the autho-
rization service to shorten the validity period for newly is-
sued tokens.

Our brokerage firms are responsible for issuing, updat-
ing, and revoking the certificates that identify their employ-
ees. Compared to traditional centralized distributed systems
authorization, our reliance on third parties presents more
entry points for a would-be attacker: if an attacker can ob-
tain an employee certificate from a brokerage firm, then the
attacker might be able to purchase or sell stock. An analysis
of how to apply usage policies, both to certificate parame-
ters such as key strength and expiration and to security prac-
tices by the third parties, is necessary before such a system
can be deployed in practice.

5 Related Work

Many recent works have targeted trust management for
distributed systems. We survey a number of them here, con-
centrating on those with well-developed runtime systems.

The KeyNote trust management system [1] allows a wide
variety of policies, but does not support general-purpose
credentials. KeyNote credentials are intended for use in ob-
taining access to a particular resource, and cannot in general
be used for other purposes (unlike a driver’s license, which
can be used for many purposes besides proving eligibility
to drive).

As discussed earlier, the Shibboleth project [18] provides
an architecture for distributed attribute-based authorization
that provides protection for sensitive attributes. The key dif-
ferences between Shibboleth and a trust-negotiation-based
approach are that Shibboleth does not support bidirectional

trust establishment or policies that involve client attributes
attested to by multiple organizations (such as being covered
by a particular insurance company and being a patient at a
particular hospital), and requires organizations to join Shib-
boleth consortiums before their members’ attributes can be
used in authorization decisions.

The Traust project [13] also uses the TrustBuilder sys-
tem as the basis of a third-party authorization server, which
can be deployed to protect legacy resources. The Traust
protocol requires a secure TLS connection and thus pushes
security considerations such as integrity and availability to
the transport layer. Traust was not targeted at a web services
environment, and therefore does not have our handler-based
architecture. Our performance analysis should also apply to
a Traust service that issues X.509 credentials as trust tokens.

Koshutanski and Massacci [11] present algorithms for
web service access control using digital credentials, along
with reasoning about policy satisfiability in a stateless en-
vironment. They support non-monotonic policies for sepa-
ration of duty and describe how to report some minimal set
of credentials for the client to disclose or revoke to gain ac-
cess. This work discusses the theory for discovering these
minimal sets more than system issues such as third-party
authorization, legacy application support, and prevention of
attacks; however, it seems reasonable that their approach
could be used as the basis of a prototype similar to ours.

Trust-X [3] offers a language and XML format for ex-
pressing trust statements, policies, and trust tickets. A trust
ticket can be presented to the trust negotiation system to
simplify future negotiations, and is not intended for use in
third-party authentication—in particular, protection against
replay attacks or interception of the trust ticket would be
needed. As mentioned earlier, Trust-X could be used as the
basis of a prototype similar to ours, and the same research
group has also investigated the use of access control rules
with web services [4].

The Cassandra project [2] has focused on the design
of a Datalog-based policy language for real-world situa-
tions. The Cassandra language offers elegant role-related
constructs inspired by its use in encoding policies for med-
ical records disclosure in Britain. At run time, two par-
ties cooperate by following the same algorithm to establish
trust, which limits autonomy and opens up potential attack
avenues. Cassandra’s runtime system is not as advanced
as its theoretical foundations (e.g., it does not yet support
verifiable, unforgeable credentials), but with a more mature
runtime system it too could be used as the basis of an au-
thorization system for web services.

Ziebermayr and Probst [23] describe how to apply ac-
cess control rules to a web service and report on an imple-
mentation using a servlet filter to determine when access is
granted. This is similar to our approach that uses handlers,
but they assume a closed system with identity-based access

control.

Like our project, TRUST [12] aims to build a third-party
token-based authorization system for web services that
gives the client control over its own credentials. .TRUST
uses distributed identity (a username/password combina-
tion) rather than attribute-based policies. .TRUST differs
from our effort in that our authorization facilities are for an
open system, which entails bilateral trust establishment and
privacy protection for both parties.

The idemix [9] system offers a runtime system that sup-
ports anonymous credentials, i.e., credentials that one can
use to prove that one has a particular attribute, without re-
vealing one’s identity. This runtime facility is backed up
by strong theoretical guarantees of anonymity and correct-
ness, including an approach to detecting collusion between
parties. We did not consider the use of idemix for our facil-
ity, as stock purchases should not be anonymous; however,
idemix would work well as the basis for a web services au-
thorization facility where anonymity was desired.

6 Conclusion

Trust negotiation is a natural fit for an authorization ser-
vice for a web service. A trust-negotiation-based autho-
rization service can give trust tokens to newly authorized
clients, which the clients present to gain access to a particu-
lar web service. The trust tokens can take a variety of forms
(SAML assertions, Kerberos tickets) as well as the X.509
certificates used in our prototype implementation.

In the long run, trust negotiation has the potential to sat-
isfy all the desiderata that we presented for web-services au-
thorization facilities. Currently, however, our experiments
showed that the runtime costs associated with the use of
trust tokens are modest, but the cost to initially obtain a to-
ken is high (7 seconds minimum). Research is needed to
address scalability considerations in trust negotiation pol-
icy engines and credential verification, as well as to address
the difficulty of policy management.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis,
“The KeyNote Trust Management System,” IETF RFC
2704, September 1999.

[2] M. Becker and P. Sewell, “Cassandra: Distributed Access
Control Policies with Tunable Expressiveness,” IEEE Work-
shop on Policies for Distributed Systems and Networks, June
2004.

[3] E.Bertino, E. Ferrari, and A. Squicciarini, “Trust-X: A Peer-
to-Peer Framework for Trust Establishment,” IEEE TKDE,
July 2004, pp. 827-842.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Bhatti, E. Bertino, and A. Ghafoor, “A Trust-based
Context-Aware Access Control Model for Web-Services,”
IEEE Intl. Conf. on Web Services, June 2004.

E. Damiani, S. di Vimercati, and P. Samarati, “Towards Se-
curing XML Web Services,” ACM Workshop on XML Secu-
rity, November 2002.

C. Ellison, B. Franz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen, “RFC 2693: SPKI Certifi cate Theory,”
http://www.fags.org/fres/rfc2693.html.

C. Gunter and T. Jim, “Policy-Directed Certifi cate Re-
trieval,” Software Practice and Experience, 2000.

A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. E. Seamons,
and B. Smith, “Advanced Client/Server Authentication in
TLS,” Network and Dist. System Security Symp., February
2002.

“idemix: pseudonymity for e-Transactions,”
http://www.zurich.ibm.com/security/idemix.

T. Jim, “SD3: A Trust Management System with Certi-
fi ed Evaluation,” IEEE Symp. on Security and Privacy, May
2001.

H. Koshutanski and F. Massacci, “Interactive Credential Ne-
gotiation for Stateful Business Processes,” Proc. Intl. Conf.
on Trust Management (iTrust), May 2005.

H. Kung, F. Zhu, and M. lansiti, “A Stateless Network Ar-
chitecture for Inter-enterprise Authentication, Authorization
and Accounting,” Intl. Conf. on Web Services, June 2003.

A. Lee, Traust: A Trust Negotiation Based Authorization
Service for Open Systems, M.S. thesis, University of Illinois
at Urbana-Champaign, August 2005.

M. Lehmann, “Developer Web Services: Creating Web Ser-
vices, Part 2,” Oracle Magazine, March/April 2004.

J. Li, N. Li, and W. Winsborough, “Automated Trust Ne-
gotiation Using Cryptographic Credentials,” ACM Conf. on
Computer and Communications Security, November 2005.

W. Nejdl, D. Olmedilla, and M. Winslett, “PeerTrust: Au-
tomated Trust Negotiation for Peers on the Semantic Web,”
Secure Data Management Workshop, 118-132, 2004.

T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and K. E. Sea-
mons, “Adaptive Trust Negotiation and Access Control,”
ACM SACMAT, June 2005.

Shibboleth Architecture Technical Overview,
Internet2 Working Draft, 8 June 2005,
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-
tech-overview-latest.pdf.

SOAP Security Extensions: Digital Signature, W3C Note, 6
February 2001, http://www.w3.0rg/TR/2001/NOTE-SOAP-
dsig-20010206/.

[20]

[21]

[22]

(23]

M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson,
R. Jarvis, B. Smith, and L. Yu, “The TrustBuilder Architec-
ture for Trust Negotiation,” IEEE Internet Computing, vol-
ume 6, number 6, November/December 2002, pages 30-37.

XML-Signature Syntax and Processing, W3C Recommenda-
tion, 12 February 2002, http://www.w3.0rg/TR/2002/REC-
xmldsig-core-20020212/.

T. Yu, M. Winslett, and K. E. Seamons, “Supporting struc-
tured credentials and sensitive policies through interopera-
ble strategies for automated trust negotiation,” ACM Trans-
actions on Information Systems Security, 6(1): 1-42, 2003.

T. Ziebermayr and S. Probst, “Web Service Authorization
Framework,” Proc. Intl. Conf. on Web Services, June 2004.

