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ABSTRACT
To increase the assurance with which agents can be deployed
in operational settings, we have been developing the KAoS
policy and domain services. In conjunction with Nomads
strong mobility and safe execution features, KAoS services
and tools allow for the specification, management, conflict
resolution, and enforcement of DAML-based policies within
the specific contexts established by complex organizational
structures. In this paper, we will discuss results, issues, and
lessons learned in the development of these representations,
tools, and services and their use in military and space
applications
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1. INTRODUCTION
The increased intelligence afforded by software agents is both
a boon and a danger. By their ability to operate independently
without constant human supervision, they can perform tasks
that would be impractical or impossible using traditional
software applications. On the other hand, this additional
autonomy, if unchecked, also has the potential of effecting
severe damage in the case of buggy or malicious agents.
Techniques and tools must be developed to assure that agents
will always operate within the bounds of established
behavioral constraints and will be continually responsive to
human control. Moreover, the policies that regulate the
behavior of agents should be continually adjusted so as to
maximize their effectiveness in both human and
computational environments.
Under DARPA and NASA sponsorship, we have been
developing the KAoS policy and domain services to increase
the assurance with which agents can be deployed in a wide
variety of operational settings. In conjunction with Nomads
strong mobility and safe execution features, KAoS services
and tools allow for the specification, management, conflict
resolution, and enforcement of policies within the specific
contexts established by complex organizational structures.
Following a description of these capabilities (section 2), we
will conclude with a brief summary of current applications
(section 3) and a brief outline of future directions (section 4).

2. KAoS AND NOMADS POLICY AND
DOMAIN SERVICES
KAoS is a collection of componentized agent services
compatible with several popular agent frameworks, including
Nomads [27], the DARPA CoABS Grid [18], the DARPA
ALP/Ultra*Log Cougaar framework (http://www.cougaar.net),
CORBA (h t tp : / /www.omg.org ) ,  a n d  Voyager
(http://www.recursionsw.com/osi.asp). The adaptability of
KAoS is due in large part to its pluggable infrastructure based
on Sun’s Java Agent Services (JAS) (http://java.agent.org).
While initially oriented to the dynamic and complex
requirements of software agent applications, KAoS services are
also being adapted to general-purpose grid computing
(h t tp : / /www.gr idforum.org)  and  W e b  services
(http://www.w3.org/2002/ws/) environments as well [17]. For a
full description of KAoS, the reader is referred to [5; 6; 7; 8; 9].
Nomads combines the capabilities of Aroma, an enhanced
Java-compatible Virtual Machine (VM), with the Oasis agent
execution environment [26] . It is designed to provide
environmental protection of two kinds:
•  assurance of availability of system resources, even in the
face of changing resource priorities, buggy agents or denial-
of-service attacks;

•  protection of agent execution state, even in the face of
unanticipated system failure.

These basic capabilities of Nomads provide essential features
of reliability and safety required for interaction with humans
in dynamic and demanding application environments. We are
currently working with Sun Microsystems on incorporating
resource management features similar to Nomads into a future
version of the commercial Java platform.
Following a discussion of the background and motivation for
KAoS and Nomads policy and domain services (section 2.1),
we will provide an overview of the KAoS Policy Ontologies
(KPO), which represent both policies and relevant application
and organizational state declaratively using the DARPA Agent
Markup Language (DAML) (section 2.2). We introduce the
KAoS Policy Administration Tool (KPAT)1, which provides a
graphical user interface to create, structure, and administer
domains and policies without needing to master all the details
of DAML (section 2.3). KAoS and Nomads policy and domain
services are used to define, manage, and enforce constraints
assuring coherent, safe, effective, and natural interaction
among collaborating groups of human and agents. Subsequent
sections describe algorithms and mechanisms for policy
conflict resolution (2.4), policy distribution (2.5), and policy
enforcement (2.6), followed by an example (2.7).

2.1 Background and Motivation
The idea of building strong social laws into intelligent
systems can be traced at least as far back as the 1940s to the
science fiction writings of Isaac Asimov [3]. In his well-known
stories of the succeeding decades he formulated a set of basic
laws that were built deeply into the positronic-brain circuitry
                                                                        
1 Pronounced “KAY-pat.”
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of each robot so that it was physically prevented from
transgression. Though the laws were simple and few, the
stories attempted to demonstrate just how difficult they were
to apply in various real-world situations.2

Shoham and Tennenholtz [24] introduced the theme of social
laws into the agent research community, where investigations
have continued under two main headings: norms and policies.
Drawing on precedents in legal theory, social psychology,
social philosophy, sociology, and decision theory [34], norm-
based approaches have grown in popularity [4; 12; 19; 20]. In
the multi-agent system research community, Conte and
Castelfranchi [11] found that norms were variously described
as constraints on behavior, ends or goals, or obligations. For
the most part, implementations of norms in multi-agent
systems share three basic features:
- they are designed offline; or
-  they are learned, adopted, and refined through the

purposeful deliberation of each agent; and
- they are enforced by means of incentives and sanctions.
Interest in policy-based approaches to multi-agent and
distributed systems has also grown considerably in recent
years (http://www.policy-workshop.org). While sharing much
in common with norm-based approaches, policy-based
perspectives differ in subtle ways. Whereas in everyday
English the term norm denotes a practice, procedure, or custom
regarded as typical or widespread, a policy is defined by the
American Heritage Online dictionary as a “course of action,
guiding principle, or procedure considered expedient, prudent,
or advantageous.” Thus, in contrast to the relatively
descriptive basis and self-chosen adoption (or rejection) of
norms, policies tend to be seen as prescriptive and externally
imposed entities. Whereas norms in everyday life emerge
gradually from group conventions and recurrent patterns of
interaction, policies are consciously designed and put into
and out of force at arbitrary times by virtue of explicitly-
recognized authority.3 These differences are generally reflected
in the way most policy-based approaches differ from norm-
based ones with respect to the three features mentioned above.
Policy-based approaches:
- support dynamic runtime policy changes, and not merely

static configurations determined in advance;
-  work involuntarily with respect to the agents, that is,

without requiring the agents to consent or even be aware
of the policies being enforced; thus aiming to guarantee
that even the simplest agents can comply with policy; and

-  wherever possible they are enforced preemptively,
preventing buggy or malicious agents from doing harm in
advance rather than rewarding them or imposing
sanctions on them after the fact.

To increase the likelihood of human acceptability of agent
technology, successful systems must attend to both the
technical and social aspects of policy [22]. From a technical
perspective, we want to be able to help ensure the protection of
agent state, the viability of agent communities, and the

                                                                        
2 In an insightful essay, Roger Clarke explores some of the
implications of Asimov’s stories about the laws of robotics
for information technologists [10]. Weld and Etzioni [35]
were the first to discuss the implications of Asimov’s first
law of robotics for agent researchers. Like most norm-based
approaches described below (and unlike most policy-based
approaches) the safety conditions are taken into account as
part of the agents’ own learning and planning processes
rather than as part of the infrastructure. In an important
response to Weld and Etzioni’s “call to arms,” Pynadath and
Tambe [23]  develop a hybrid approach that marries the
agents’ probabilistic reasoning about adjustable autonomy
with hard safety constraints to generate “policies”
governing the actions of agents. The approach assumes a set
of homogeneous agents who are motivated to cooperate and
follow optimally-generated policies.

3  While it is true that over time norms can be formalized into
laws, policies are explicit and formal by their very nature at
the outset.

reliability of the resources on which they depend [9]. To
accomplish this, we must guarantee, insofar as is possible, that
the autonomy of agents can always be bounded by explicit
enforceable policy that can be continually adjusted to
maximize the agents’ effectiveness and safety in both human
and computational environments. From a social perspective,
we want agents to be designed to fit well with how people
actually work together. Explicit policies governing human-
agent interaction, based on careful observation of work
practice and an understanding of current social science
research, can help assure that effective and natural
coordination, appropriate levels and modalities of feedback,
and adequate predictability and responsiveness to human
control are maintained [8; 14]. These and similar technical and
social factors are key to providing the reassurance and trust
that are the prerequisites to the widespread acceptance of agent
technology for non-trivial applications.
Some important features of KAoS are worth noting here before
giving a detailed description. First, the approach does not
assume that the policy-governed system is comprised of a
homogeneous set of components that have been designed in
advance to work with KAoS services. Rather the goal is to be
able to have KAoS services work with arbitrarily written
components after the fact through support being added
transparently at the platform level. Second, insofar as possible
the KAoS framework supports dynamic runtime policy
changes, and not merely static configurations determined in
advance. Third, the framework is extensible to a variety of
execution platforms that might be simultaneously running
with different enforcement mechanisms—in principle any
platform for which policy enforcement mechanisms may be
written. Fourth, the KAoS framework is intended to be robust
and adaptable in continuing to manage and enforce policy in
the face of attack or failure of any combination of components.
Finally, KAoS addresses the need for easy-to-use policy-based
administration tools capable of containing domain knowledge
and conceptual abstractions that let application designers
focus their attention more on high-level policy intent than on
implementation details. Such tools require sophisticated
graphical user interfaces for monitoring, visualizing, and
dynamically modifying policies at runtime.

2.2 KAoS Policy Ontologies
In principle, developers could use a variety of representations
to express policies. At one extreme, they might write these
policies in some propositional or constraint representation. At
the other extreme lie a wide variety of simpler schemes, each of
which gives up some types of expressivity. For an assessment
of current description-logic-based representations and tools
for policy based on our experience with KAoS, see [33]; for a
comparison between the KAoS, Rei, and Ponder approaches to
policy management, see [32].
Overview of DAML and KPO. The KAoS Policy Ontologies
(KPO) are currently expressed in DAML (http://www.daml.org).
Designed to support the emerging “Semantic Web,” DAML
extends RDF to allow users to specify ontologies composed of
taxonomies of classes and inference rules. These ontologies
can be used by people for a variety of purposes, such as
enabling more accurate or complex Web searches. Agents can
also use semantic markup languages to understand and
manipulate Web content in significant ways; to discover,
communicate, and cooperate with other agents and services; or,
as we outline in this paper, to interact with policy-based
management services and control mechanisms. OWL, a W3C-
a p p r o v e d  s u c c e s s o r  t o  D A M L
(http://www.w3.org/2001/sw/WebOnt), is currently being
finalized and will be adopted in KAoS as soon as needed tools
are in place.
The current version of KPO defines basic ontologies for
actions, actors, groups, places, various entities related to
actions (e.g., computing resources), and policies. There are
currently about 80 classes and 40 properties defined in the
basic ontologies. It is expected that for a given application,
developers will further extend KPO. As the application runs,
classes and individuals corresponding to new policies and
application entities are also transparently added and deleted as
needed.
Actors, actions, groups, and places. The actor ontology
distinguishes between people and various classes of artificial



agents. Most agents are only permitted to perform ordinary
actions , however various agents that are part of the
infrastructure as well as authorized human users may variously
be permitted or obligated to perform certain policy actions,
such as policy approval and enforcement. Groups of actors or
other entities may be distinguished according to whether the
set of members is defined extensionally (i.e., through explicit
enumeration in some kind of registry) or intensionally (i.e., by
virtue of some common property such as a joint goal that all
actors possess or a given place where various entities may
temporarily or permanently be located).
Pol ic i e s .  The policy ontology distinguishes between
authorizations (i.e., constraints that permit or forbid some
action) and obligations (i.e., constraints that require some
action to be performed, or else serve to waive such a
requirement) [13]. A policy is represented as a DAML instance
of the appropriate policy type with associated values for
properties: priority, update time stamp and a site of
enforcement.  The most imported property value is the name of
a controlled action class. In most cases a new action class i s
built automatically whenever a policy is defined. Through
various property restrictions, a given policy can be variously
scoped, for example, either to individual agents, to agents of a
given class, to agents belonging to a particular group, or to
agents running in a given physical place or computational
environment. Additional aspects of the action context can be
precisely described by restricting values of its properties.
The policy example below, drawn from the DARPA CoAX
experiment (described in section 3), stipulates that the
members of a domain named Arabello-HQ are forbidden to
communicate with those outside this domain using
unencrypted communication:4

<daml:Class rdf:ID="P1Action">
<rdfs:subClassOf rdf:resource="#CommunicationAction" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty

rdf:resource="#performedBy" />
<daml:toClass

rdf:resource="#MembersOfDomainArabello-HQ" />
</daml:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty
rdf:resource="#hasDestination" />
<daml:toClass
rdf:resource="#notMembersOfDomain
Arabello-HQ" />

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

<policy:NegAuthorizationPolicy rdf:ID="P1">
<policy:controls rdf:resource="#P1Action" />
<policy:hasSiteOfEnforcement rdf:resource="#ActorSite" />
<policy:hasPriority>1</policy:hasPriority>
<policy:hasUpdateTimeStamp>446744445544</policy:hasUp

dateTimeStamp>
</policy:NegAuthorizationPolicy

2.3 Define Policies and Domains with KPAT
KPAT provides a graphical user interface for specifying and
modifying policies and domains.5 In addition, KPAT can be
used to browse and load ontologies and to deconflict newly
defined policies. As policies, domains, and application
entities are defined using KPAT, the appropriate DAML
representations are generated automatically in the background
and asserted into or retracted from the system, insulating the
user from having to know DAML or any other policy language.
A generic DAML policy editor may be used for this purpose
(see figure 5 below). Specialized policy templates can also be
defined to allow various classes of policy definitions to be
defined as high-level domain-specific abstractions. A rich set
                                                                        
4 Of course the DAML policy is not meant to be written or

analyzed directly by an administrator; instead the KPAT user
interface would be used to hide the complexity of the
underlying representations

5 Policies can also be defined, analyzed, or modified
programmatically by trusted software components.

of queries is also available through KPAT or through
programmatic interfaces.
Groups of agents are structured into agent domains and
subdomains to facilitate policy administration. Domains may
represent any sort of group imaginable, from potentially
complex organizational structures to administrative units to
dynamic task-oriented teams with continually changing
membership. A given domain can extend across host
boundaries and, conversely, multiple domains can exist
concurrently on the same host. Domains may be nested
indefinitely and, depending on whether policy allows, agents
may become members of more than one domain at a time.

Figure 1. KPAT with the domain view showing multiple nested
domains.

2.4 Policy Conflict Resolution
The KAoS Policy Ontologies are used for various forms of
online or offline inference and analysis, including query-
based policy disclosure management, reasoning about future
actions based on knowledge of policies in force, and in
assisting users of policy specification tools to understand the
implications of defining new policies given the current
context and the set of policies already in force.

Changes or additions to policies in force, or a change in status
of an actor (e.g., an agent joining a new domain or moving to a
new host) or some other entity may require logical inference to
determine first of all which policies are in conflict and second
how to resolve these conflicts [21]. We have implemented a
general-purpose algorithm for policy conflict detection and
harmonization whose initial results promise a high degree of
efficiency and scalability.

Figure 2 shows the three types of conflict that can currently be
handled: positive vs. negative authorization (i.e., being
simultaneously permitted and forbidden from performing
some action), positive vs. negative obligation (i.e., being both
required and not required to perform some action), and
positive obligation vs. negative authorization (i.e., being
required to perform a forbidden action). The use of policy
deconfliction and harmonization algorithms that incorporate
subsumption-based reasoning means that policy conflicts can
be detected and resolved even when the actors, actions, or
targets of the policies are specified at very different levels of
abstraction. The policy conflict resolution algorithms rely on
a version of Stanford’s Java Theorem Prover
(http://www.ksl.stanford.edu/software/JTP/) combined with
our own KAoS-specific reasoning and query extensions.
Steps in policy conflict resolution. KAoS performs several
steps in order to resolve policy conflicts:

1 .  A DAML policy conflict ontology must be loaded
into JTP along with the set of DAML policies to be
deconflicted.

2. A Java list of all policies is constructed and sorted
according to user-defined criteria for policy
precedence.6

                                                                        
6 We currently rely on numeric policy priority assignments by

users to determine precedence. In the future we intend to
allow people complete flexibility in designing the nature
and scope of precedence conditions. For example, it would



3. For each policy in the sorted list, iterate through all
the elements with a lower precedence and check to see
if there is a policy conflict. A policy conflict occurs
if the two policies are instances of conflicting types
and if the JTP subsumption mechanism determines
that the actions (comprising the action itself along
with the actor and other entities associated with the
action) that the two policies control are not disjoint.

4. The lower precedence policy from the conflicting pair
of policies is removed from the Java list and the
policy harmonization algorithm is invoked. It
attempts to modify the policy with the lower
precedence to the minimum degree necessary to
resolve the conflict. If precedence cannot be
determined otherwise, KAoS will ask the
administrator to determine the appropriate action:
either removing the policy, changing precedence,
splitting the policy, or  continuing with
harmonization [33]. The harmonization algorithm
may generate zero, one or several new policies to
replace the removed policy.

5 .  The newly constructed harmonized policies inherit
the precedence and the time of last update from the
removed policy, and a pointer to the original policy
is maintained so that it can be recovered if necessary
as policies continue to be added or deleted in the
future.

Details of policy harmonization. The derivation of the newly-
generated set of harmonized policies from the original policies
(P1 and P4) can be understood by imagining an intersection of
two N-dimensional Cartesian products:
If

P1 and P4 are two Cartesian products7 defined as:
P1 = D11 x D12 x …. x D1n
P4 = D21 x D22 x …. x D2n

then
P1\P4 = subP1 + subP2 + … + subPn

where
subPk =
(D11∩D21) x ... x (D1(k-1) ∩ D2(k-1)) x (D1k\D2k) x
D1(k+1) x .. x D1n

                                                                                                                        
be possible to define precedence based on the relative
authorities of the individual who defined or imposed the
policies in conflict, which policy was defined first, which
has the largest or smallest scope, whether negative or
positive authorization trumps by default, whether
subdomains takes precedence over superdomains or vice
versa, etc.

7 A Cartesian product is the collection of all ordered n-tuples
that can be formed so that they contain one element of the
first set, one element of the second, and so forth until you
reach the nth set. This collection can be seen as constituting
an n-dimensional space in which each n-tuple designates a
cell.

Figure 3. Graphical representation of policy harmonization.

Figure 3 shows a 3-D graphical representation of policy
harmonization. The illustration, based on the example
described in section 2.7 below, contains only a single action
property. Mapping the mathematical definition above to the
generation of harmonized policies we get the following:

1. The first harmonized policy has a range of actors that
corresponds to the difference between the ranges of
the two original policies and a controlled action and
range of values on the action properties that
correspond to those of the lower-precedence policy.

2. The second harmonized policy has a range of actors
that corresponds to the intersection of the ranges of
the two original policies, a controlled action that
corresponds to the differences between those of the
two policies, and a range of values on the action
properties that correspond to that of the lower-
precedence policy.

3 .  Additional harmonized policies are built to
correspond to each action property in the two
original policies. The range of actors corresponds to
the intersection of the ranges of the two original
policies and the controlled action corresponds to the
intersection between those of the two policies.

The results of computing any of the above policies may be
empty, in which case the result can be discarded. Recently, we
have modified KAoS conflict resolution handling to obviate
the need for harmonization in many cases, further increasing
performance.

2.5 Policy Distribution
Figure 4 shows the major components of KAoS policy and
domain services framework. During the initialization process,
the core policy ontologies are loaded into the KAoS Directory
Service (DS) using the namespace management capabilities of
KPAT. Additional application-specific or platform-specific
ontologies then can be loaded dynamically from KPAT or
programmatically using the appropriate Java method. As the
end-user application executes, instances relating to
application entities are added and deleted as appropriate. For
specific applications and platforms, the KAoS framework can
be further extended and specialized by creating plug-ins for
[33]:
- Policy template and custom action property editors;
-  Enforcers controlling, monitoring, or facilitating general

or specific actions;
- Classifiers to determine if a given instance is in the scope

of the given class.
The DS implements domain management functionality,
determining, for example, whether agents can join their
domain and analyzing or deconflicting policies as required.



The DS is responsible for notifying Guards about changes in
policy or other aspects of system state that may affect their
operation.

Figure 4. KAoS policy and domain services architecture.
Following conflict detection, policies are distributed to
guards based on information about types of agents controlled
by them. Guards activate appropriate enforcers based on
received policy types. While KPAT, the DS, and the Guards are
intended to work identically across different agent platforms
(e.g., DARPA CoABS Grid, Cougaar, CORBA) and execution
environments (e.g., Java VM, Aroma VM), enforcement
mechanisms are typically designed for a specific platform and
execution environment. Our approach enables policy
uniformity in domains that might be simultaneously
distributed across multiple platforms and execution
environments, as long as semantically equivalent monitoring
and enforcement mechanisms are available.
Because policy analysis and policy conflict resolution
normally take place prior to the policy being given to the
Guard for enforcement, the operation of the Guards and
enforcement mechanisms can be lightweight and efficient.

2.6 Policy Enforcement
Enforcers are the mechanism by which Guards ensure
compliance with authorization or obligation policies. The
grounding of enforcers to platforms and environments cannot
always be made fully generic. However, they can often be made
fully general and understand abstract ontology action classes
via their property implementedBy (which maps them to
concrete environment operations) and through the use of
reflection and security mechanism of the environment. Other
environments require pre-building enforcers based on the
ontology description of the controlled action class,
potentially using a preprocessor. Finally, some cases required
fully custom built enforcers. What can be made generic
however is the interface to the policy disclosure system

answering the question, in the case of authorization policies,
“Is a given action authorized or not?”8

In applications to date, we have relied on several different
kinds of enforcement mechanisms. Enforcement mechanisms
built into the execution environment (e.g., OS or Virtual
Machine level protection) are the most powerful sort, as they
can generally be used to assure policy compliance for any
agent or program running in that environment, regardless of
how that agent or program was written. For example, the Java
Authentication and Authorization Service (JAAS) provides
methods that ties access control to authentication. In KAoS, we
have in the past developed methods based on JAAS that allow
policies to be scoped to individual agent instances rather than
just to Java classes. Currently, JAAS can be used with Java
VMs; in the future it should be possible to use JAAS with the
Aroma VM as well. As described above, the Aroma VM
provides, in addition to Java VM protections, a comprehensive
set of resource controls for CPU, disk and network. The
resource control mechanisms allow limits to be placed on both
the rate and the quantity of resources used by Java threads.
Guards running on the Aroma VM can use the resource control
mechanisms to provide enhanced security (e.g., prevent or
disable denial-of-service attacks), maintain quality of service
for given agents, or give priority to important tasks.
A second kind of enforcement mechanism takes the form of
extensions to particular agent platform capabilities. Agents
that participate in that platform are generally given more
permissions to the degree they are able to make small
adaptations in their agents to comply with policy
requirements. For example, in applications using the DARPA
C oABS  G r i d ,  w e  h a v e  d e f i n e d  a
KAoSAgentRegistrationHelper to replace the default
GridAgentRegistrationHelper. Grid agent developers
need only replace the class reference in their code to
participate in agent domains and be transparently and reliably
governed by policies currently in force. On the other hand,
agents that use the default GridAgentRegistrationHelper
do not participate in domains and as a result they are typically
granted very limited permissions in their interactions with
domain-enabled agents.
Finally, a third type of enforcement mechanism is necessary
for obligation policies. Because obligations cannot be
enforced through preventive mechanisms, enforcers usually
only monitor agent behavior and determine after the fact
whether a policy has been followed. For example, if an agent i s
required by policy to report its status to its supervisor every
five minutes, an enforcer might be deployed to watch whether
this is in fact happens, and if not to either try to diagnose and
fix the problem, or alternatively take appropriate sanctions
against the agent (e.g., reduce permissions or publish the
observed instance of noncompliance to an agent reputation
service). In addition to enforcers that monitor the performance
of obligations, a second type of enforcer called an enabler
goes beyond simple monitoring to proactively facilitate or
perform the obligation on behalf of the agent. For example, a
monitor might not only watch whether the agent described
above reports every five minutes, but actively facilitate the
fulfillment of its obligation by querying its status every five
minutes and making the report to its supervisor on its behalf.9

Each policy has a property that defines the site of policy
enforcement. For example, access control policies are typically
enforced by a mechanism directly associated with the resource
to be protected (i.e., the target). However in some cases,
administrators may not have control over this resource and
instead may require the policy to be enforced by a mechanism
associated with the actor (i.e., the subject) or some other entity
under their purview.

                                                                        
8 To better support policy exploration we are implementing a
variety of additional policy disclosure mechanisms to help
users or framework components answer various “what if” and
“how to” questions, e.g., test permission, get obligations,
learn options, test alternatives, or get consequences.

9 Enablers can also be used in conjunction with certain kinds
of authorization policies.



2.7 Policy Example
To better explain policy conflict resolution we will describe a
simple English-language example of the process and results.
The example is taken from the Coalition Agents Experiment
(CoAX) described below (section 3).
As part of the CoAX scenario, the fictitious country of
Arabello joined the coalition. One interaction involved a
coalition agent tasked to locate a hostile submarine and an
Arabello Intel agent capable of providing sensor reports from
an underwater sensor grid. As new coalition partners, Arabello
system administrators dynamically allowed sensor contact
reports to be sent to the coalition agent, but for security
reasons, restricted the range of messages that could be sent
outside of the Arabello domain. The limitation, described as
part of a semantic filtering policy [28; 29]  represented in
DAML, limited these outgoing messages to those whose
content was reports about a specific class of submarine,
belonging to the enemy forces, but disallowing reports on
other ships, such as those of Arabello itself.
A global default positive authorization policy for the entire
coalition was previously decided:

P0: Allow coalition actors to perform any action
that is not explicitly prohibited by policy.10

The coalition could have just as easily implemented a negative
authorization policy as a default, prohibiting any action that
was not explicitly authorized by policy.
Arabello headquarters decides on the following restrictive
default policy for the actors in their domain:

                                                                        
10 Default authorization modalities are currently configured on
a per domain basis. The defaults either correspond to a
democracy, where everything is permitted that is not
explicitly forbidden, or a tyranny, where everything i s
forbidden that is not explicitly permitted.

P 1 :  N e g a t i v e  A u t h o r i z a t i o n  on
MembersOfDomainArabello-HQ to perform
Communicat ionAction on hasDest inat ion
complementOf MembersOfDomainArabello-HQ.
(i.e., Prohibit outgoing communication between
members of the Arabello domain and any actor
outside the Arabello domain.)

However Arabello-Contingent administrators would like to
enable the Arabello Intel agent to be able to send a subset of
its reports to the coalition. It defines the following policy,
which is allocated a higher priority than the previous policy
(figure 5):

P4: Positive Authorization on Arabello-Intel to
perform CommunicationAction on hasDestination
MembersOfDomainCoalition-Binni if the semantic
filter allows it (i.e., Allow the Arabello Intel agent
to send outgoing messages about enemy
submarines to members of the Binni-Coalition
domain).

When the Arabello administrators commit policies P1 and P4,
KAoS first identifies the policy conflict inherent in the fact
that the two policies are mutually inconsistent (i.e., P1
disallows any communication outside Arabello while P4
permits selected communication). Since P4 was defined to be
of higher priority, it remains in force unchanged while P1
becomes the subject for policy harmonization. The result i s
three new harmonized policies, all with the same priority of the
original P1:

P1 -H1 :  Nega t i v e  Au t ho r i z a t i on  on
MembersOfDomainArabel lo-HQ di f ference
Arabello-Intel to perform CommunicationAction
o n  h a s D e s t i n a t i o n  (complementOf
MembersOfDomainArabello-HQ) (i.e., Prohibit
outgoing communication for all Arabello domain
members except the Arabello Intel agent to
members of non-Arabello domains).



P1-H3: Negative Authorization on Arabello-Intel
to  per form Communica t ionAc t ion  on
h a s D e s t i n a t i o n  ( c o m p l e m e n t O f
MembersOfDomainArabello-HQ) dif ference
MembersOfDomainBinni-Coalition (i.e., Prohibit
outgoing communication by the Arabello Intel
agent to any actor that is not a member of the
Binni-Coalition domain).
P1-H4: Negative Authorization on Arabello-Intel
to  per form Communica t ionAc t ion  on
h a s D e s t i n a t i o n  ( c o m p l e m e n t O f
MembersOfDomainArabello-HQ) intersection
MembersOfDomainBinni-Coalition if the semantic
filter does not allow it (i.e., Prohibit outgoing
communication by the Arabello Intel agent to any
actor outside the Arabello domain who is a
member of the Binni-Coalition domain if the
semantic filter does not allow it).

The first policy (P1-H1) corresponds to the first type of
harmonized policy described in section 2.4 and shown in
Figure 3; the other two policies (P1-H3 and P1-H4) correspond
to the third type of harmonized policy. Since both policies
constrained the identical class of action, no policy of the
second type was generated.
Following harmonization, the user is notified and given an
opportunity to resolve any remaining issues and approve the
results of policy conflict resolution (figure 6). Following user
approval, any obsolete policies are removed and new policies
are sent to the appropriate enforcers. In this case, a
communication enforcer associated with the Arabello Intel
agent is requested to remove P1 and replace it with P1-H3 and
P1-H4. Policy P4 is also sent to this enforcer. The next version
of the policy distribution mechanism will take information
about the enforcers default behavior into account and will not
distribute policies in such a case. Communication enforcers
associated with each of the other agents in the Arabello
domain are requested to remove P1 and replace it with P1-H1.

Figure 6. KPAT notifies the user of the results of policy
harmonization and any issues that have arisen.

Performance. We have tested the performance of KAoS policy
conflict resolution algorithms on a machine with Pentium III
1.2 GHz and 640 MB RAM using JDK 1.3.1. In the limited non-
optimized tests we have made to date, policy commitment,
conflict resolution, and harmonization is consistently
performed in a fraction of a second. For reasons that are not yet
fully understood, however, assertion of each new policy into
the JTP database typically takes an order of magnitude longer
than that. For this reason, we have recently implemented a
workaround that does not require policy instances to be
represented in JTP. Stanford JTP developers are also working
on performance improvements.

3. APPLICATIONS
Research and development of KAoS and Nomads is taking
place in the context of several applications.
The DARPA CoABS-sponsored Coalition Operations
Experiment (CoAX) (http:// www.aiai.ed.ac.uk /project/ coax/)
[2; 28] is a large international cooperation that models
military coalition operations and implements agent-based
systems to mirror coalition structures, policies, and doctrines.
CoAX aims to show that the agent-based computing paradigm
offers a promising new approach to dealing with issues such as

the interoperability of new and legacy systems, the implicit
nature of coalition policies, security, and recovery from attack,
system failure, or service withdrawal. KAoS provides
mechanisms for overall management of coalition
organizational structures represented as domains and
operational constraints represented as policies, while Nomads
provides strong mobility, resource management, and
protection from denial-of-service attacks for untrusted agents
that run in its environment.
W i t h i n  t h e  DARPA  U l t r a *Log  program
(http://www.ultralog.net) we are collaborating with Network
Associates (NAI) to extend and apply KAoS policy and domain
services to assure the scalability, robustness, and
survivability of logistics functionality in the face of
information warfare attacks or severely constrained or
compromised computing and network resources.
As part of t h e  Army Research Lab Advanced Decision
Architectures Consortium, we have been investigating the use
of KAoS and Nomads technologies to enable soldiers in the
field to use agents from handheld devices to perform tasks
such as dynamically tasking sensors and customizing
information retrieval [29; 31]. Suri has developed an agile
computing platform [30] that provides a foundation for this
work. We have also commenced an investigation of
requirements for policy-based information access and analysis
within intelligence applications.
An application focused more on the social aspects of agent
policy is within the NASA Cross-Enterprise and Intelligent
Systems Programs, where we are investigating the use of
policy-based models to drive human-robotic teamwork and
adjustable autonomy for highly-interactive autonomous
systems such as the Personal Satellite Assistant (PSA), a
softball-sized flying robot that is being designed to operate
onboard spacecraft in pressurized micro-gravity environments
[1; 8]. The same approach is also being generalized for use in
other testbeds, such as unmanned vehicles and other highly
interactive autonomous systems [25].
The Office of Naval Research (ONR) is supporting research to
extend this work on effective human-agent interaction to
unmanned vehicles and other autonomous systems that
involve close, continuous interaction with people. As one part
of this research IHMC and University of South Florida are
developing a new robotic platform with carangiform (fish-like)
locomotion, specialized robotic behaviors for humanitarian
demining, human-agent teamwork, agile computing, and
mixed-initiative human control.
Under funding from DARPA's Augmented Cognition Program,
we are taking the challenge of effective human-agent
interaction one step further as we investigate whether a general
policy-based approach to the development of cognitive
prostheses can be formulated, in which human-agent teaming
could be so natural and transparent that robotic and software
agents could appear to function as direct extensions of human
cognitive, kinetic, and sensory capabilities [15; 16].

4. FUTURE DIRECTIONS
Future work will include: performance enhancements to
reasoning mechanisms, simplification and streamlining of the
KPAT user interface, and policy implementation constraint
resolution to deal with contention for finite resources.
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