
Small Mobile Agent Platforms
Extended Abstract

Niranjan Suri, Marco Carvalho, Robert Bradshaw, and Jeffrey M. Bradshaw
Institute for Human & Machine Cognition - University of West Florida

40 S. Alcaniz St. - Pensacola, FL 32501 USA

{nsuri,mcarvalho,rbradshaw,jbradshaw}@ai.uwf.edu

1. INTRODUCTION
Mobile agents can benefit small devices such as PDAs and
cellular phones in numerous ways. They can be used to download
customized, context-sensitive services to small devices on
demand [1]. Mobile agents can also help alleviate bandwidth
limitations and support disconnected operation, both significant
problems in wireless and mobile environments. However, to
achieve these capabilities, small devices must be able to support
mobile agents. This paper describes our efforts to date on
building small mobile agent platforms. Note that our approaches
are based on the Java language and architecture. While it is
certainly possible to use other languages for mobile agents, we
chose Java for its suitability to mobile agents, its popularity, as
well as due to our prior work on Java-based mobile agent
platforms.[2]

2. REQUIREMENTS AND CHALLENGES
Mobile agent platforms have several requirements: Platform
independence, authentication, secure execution, dynamic class
loading, network connectivity, and resource control are some
important ones. Depending on the nature of the application, other
capabilities such as state capture (for strong mobility) could also
be important requirements. Satisfying these requirements on
small portable devices raises several challenges.

The size and weight restrictions have a direct influence on
battery capacity, processing power, network connectivity,
memory capacity, persistent storage, and display capabilities.
Most mobile agent platforms, including ours, use an interpreted
execution environment like Java. Interpreted execution adds a
performance penalty that is amplified by the low processing
power available on small devices.

Another challenge is dynamic class loading. While the Java VMs
that comply with the Java 2 Standard Edition specification
provide built-in support for dynamic class loading, the Java 2
Micro Edition VMs (including the KVM from Sun) do not
provide this capability.

Limited network bandwidth and connectivity is actually not a
challenge, but a requirement satisfied by mobile agents. Mobile
agents can, in some circumstances [3], reduce network
bandwidth usage and support disconnected operation. However,
small memory and persistent storage capacities place additional
demands on bandwidth and connectivity. For example, strategies
such as class caching cannot be used resulting in multiple
transfers of the agent code.

Secure execution is yet another challenge. Security is divided
into two categories: protecting the platform from malicious

agents and protecting agents from a malicious platform. The
former can be achieved through sandboxing (already available in
Java) and resource control mechanisms (which are not yet
available). The latter, protecting agents from malicious
platforms, is problematic. There are no comprehensive solutions
to this problem. Moreover, the solutions that have been proposed
to date are computationally expensive, or make other
assumptions such as availability of trusted hosts, etc. that make
them impractical for small devices (see [4] and [5] for a
comparison and critique of many existing solutions).

It is worth noting that device capabilities and battery capacities
are constantly improving, which may in due course alleviate
some of these challenges. However, wireless network bandwidth
is not improving at the same rapid rate as wired bandwidth.
There is a 3:1 ratio in improvements of wired versus wireless
bandwidth. For example, even in UMTS (which provides a 2.0
Mbps theoretical bandwidth), the bandwidth is shared amongst
the users of the cell, thereby introducing significant variability in
the available bandwidth.

3. DESIGN
We are pursuing two different approaches to developing small
mobile agent platforms. The first approach is targeted towards
platforms such as PocketPC, which can run the PersonalJava VM
The second approach is targeted towards platforms such as the
Palm OS and mobile phones, which can run the K Virtual
Machine.

3.1 Personal Java-based Platform
PersonalJavaTM was initially introduced by SUN as the JavaTM
technology for connected portable devices. It is comprised of an
optimized Java Virtual Machine and a set of extended java
libraries specifically designed for small portable devices such as
PDA’s and web-phones. One of its primary design goals was to
reduce static memory footprint of the virtual machine as
explained in detail by SUN.

A Java based mobile agent system designed to run on small
devices must comply with its limited capabilities and yet be
flexible enough to allow agents to securely operate and move
between hosts. Our initial approach was to provide a hybrid
agent system that would rely on the standard capabilities of the
PersonalJavaTM platform while running on small devices and still
take full advantage of the system resources and J2SE capabilities
after moving back to computers or servers. This capability is
available in the NOMADS agent system.

The NOMADS agent system [2] comprises two distinct and yet
integrated implementations of a common API. The system

comprises its own java virtual machine and two execution
environments with different capabilities and characteristics.

The Oasis execution environment provides NOMADS with
strong mobility and resource control capabilities. Oasis
instantiates its own virtual machine (Aroma), designed to enforce
resource control and strong mobility. At this moment, Aroma is
compatible with JDK 1.2.2 but it is being ported to support
JDK1.3.1 as well.

Spring is a java only execution environment implemented for
NOMADS. It is cross-platform and fully compatible with Oasis.
Spring relies on the standard java classes and JVM. It supports
only weak mobility and cannot provide resource control. It was
designed to allow great portability and interoperability.

One of the great advantages of this approach for small devices is
that NOMADS agents can move seamlessly between the two
execution environments. Agents can move between Oasis and
Spring environments using weak mobility and still use strong
mobility to travel between Oasis environments. Such capability
alone provides great flexibility to the agents and extended
portability for NOMADS.

Since all communication and transport mechanisms implemented
in Spring are based on TCP sockets and object serialization, the
porting of the execution environment from J2SE to
PersonalJavaTM was easily and successfully achieved without
major code modification.

NOMADS agents running on small devices have complete access
to all the PersonalJavaTM classes and are still bound to the
security policies defined. The agents can use graphical resources
based on the AWT libraries, network resources and even
advances features such as reflection and remote method
invocation (RMI).

Preliminary tests have indicated that such approach is
advantageous and allows the agent to identify and adapt to
constrains of the environment (through the execution
environment in which it is running).

One of the drawbacks observed was that the resources required
by the PersonalJavaTM platform would still impose strong
limitations on the devices that could be used to run Spring. We
could successfully run the system on small devices like HP
Jornada Palm PC with only 16MB of RAM. It is expected though
that lower end devices would present performance issues.
Besides that, the results obtained by using PersonalJavaTM were
very encouraging and worked as a proof of concept to this initial
approach.

After the announcement of Java 2 Micro Edition (J2ME) with its
scalable design based on the use of customized profiles, SUN has
created a Java Specification Request (JSR62) aimed to replace
PersonalJavaTM by a personal profile in J2ME. This personal
profile, as presented on the JSR-62 will target the same
platforms initially intended for the PersonalJavaTM with minimum
memory requirement of 1MB, using the KVM instead of the
PersonalJava 1.1 Virtual Machine. The K Virtual Machine from
SUN is designed to operate on very small memory devices such
as mobile phones.

3.2 Aroma-based Platform
The Aroma VM is a clean-room implementation of the Java
Virtual Machine specification. Aroma provides two key
capabilities over standard Java VMs: state capture and resource
control. State capture allows the execution state of Java threads
to be captured and moved from one instance to another instance
of Aroma. This capability can be used to provide strong and
forced mobility. Resource control allows limits to be placed on
the rate and quantity of resources used by threads (including
CPU, disk, and network). The Aroma VM has already been
ported to the Win32 platform and Linux and Solaris UNIX
platforms. We are now in the process of porting Aroma VM to
the Windows PocketPC platform. Once this is completed, Oasis
will be able to operate on PocketPC platforms, providing an
alternative to Spring and PersonalJava. Oasis will provide strong
mobility and resource control on small devices also.

4. SUMMARY AND FUTURE WORK
Small devices can benefit from mobile agent technologies in
several ways. However, they present several challenges that need
to be addressed. We are currently in the process of developing
small mobile agent platforms for such devices. Currently, we
have an implementation that runs on PersonalJava. We are
continuing to port the Aroma VM and the Oasis mobile agent
environment to the PocketPC environment as well as develop a
KVM-based implementation of the mobile agent platform.

5. REFERNCES
[1] Adler, M. Bradshaw, J.M., Mahan, M., and Suri, N.

Applying Mobile Agents to Enable Dynamic, Context-
Aware Interactions for Mobile Phone Users. In Proceedings
of the Third International Workshop on Mobile Agents for
Telecommunications Applications (MATA 2001). Lecture
Notes in Computer Science, Vol. 2164. SPRINGer, 2001.

[2] Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill,
G.A., & Jeffers, R. (2000). Strong Mobility and Fine-
Grained Resource Control in NOMADS. Proceedings of the
2nd International Symposium on Agents Systems and
Applications and the 4th International Symposium on
Mobile Agents (ASA/MA 2000). Zurich, Switzerland

[3] Gray, R.S., Kotz, D., Peterson, R.A. Jr., Gerken, P.,
Hofmann, M., Chacon, D., Hill, G., and Suri, N. Mobile-
Agent versus Client/Server Performance: Scalability in an
Information-Retrieval Task. Dartmouth College Computer
Science Technical Report TR2001-386.

[4] Knoll, G., Suri, N., Bradshaw, J.M., Path-based Security for
Mobile Agents. First International Workshop on Security in
Mobile and Multi-Agent Systems (SEMAS 2001).
Montreal, Canada 2001.

[5] Jansen, W. and Karygiannis, T. Mobile Agent Security.
NIST Technical Report. 1999.

[6] Suri, N. Bradshaw, J.M., Breedy, M.R., Ford, K.M., Groth,
T., Hill, G.A., and Saavedra, R. State Capture and Resource
Control for Java: The Design and Implementation of the
Aroma Virtual Machine. White Paper

