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ABSTRACT 
In this paper, we describe a reconfigurable testbed for 
experiementation on joint activity in mixed human-agent-robot 
teamwork (HART). The testbed was originally inspired by the 
classic AI planning problem of Blocks World (BW) extended into 
what we call Blocks World for Teams (BW4T) [1] and now with 
more generality and power into RT4T, a Reconfigurable Testbed 
for Teams. By teams, we mean at least two, but usually more 
human , agent, or robot members. We describe the results of two 
experiments using BW4T, one showing the results of increasing 
autonomy without addressing interdependence and the other 
addressing soft interdependence as a performance factor. We 
introduce RT4T and a new teamwork measurement schema. 
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1. INTRODUCTION 
As a means for inexpensive, rapid evaluation of hypotheses 
relating to human-robot teamwork, IHMC has developed a 
simulation testbed for joint activity While there have been plenty 
of multi-agent system (MAS) testbeds, there are very few testbeds 
specifically designed for arbitrary sized heterogeneous (human 
and agent) teams. This testbed is similar in some ways to MICE 
(Michigan’s Intelligent Coordination Experiment) [2] in that it 
addresses a simple domain. BW4T and RT4T are similar to 
Gamebots3D [3] in that we focus on human participation. 

Despite the similarities, there are some significant differences in 
our testbeds with previous work by others. MICE is a discrete 
event 2D only testbed. BW4T is a continuous event 2D only 
testbed. Gamebots is a continuous event 3D testbed. RT4T is a 
continuous event 3D testbed. MICE and Gamebots tend to focus 
on post-activity performance metrics (see Section 5 below). In 
contrast, both BW4T and RT4T use interdependence as a way to 
understand both design-time and runtime issues. For example, 
BW4T can use block color to vary interdependence within the 
same activity. In addition, BW4T and RT4T are more suited to 
explore the variety of communications possible in teamwork. For 
example, Gamebots provides only a basic set of communication 
options, including enumerated messages like “Defend the base,” 
“Hold your position,” and “Cover me.” No rationale for the choice 
of these messages is given and it is not clear whether the message 

set is extensible. In BW4T and RT4T, the choice of messages is 
configurable and motivated by theoretical considerations. 

An impressive capability of our testbeds is the ability to address 
problems and scenarios of increasing complexity in both taskwork 
and teamwork. The fact that we can deploy the simulation 
equivalent of real robots in our testbeds sets us apart from 
approaches such as Colored Trails. 

2. INITIAL VERSION OF BW4T 
We will describe the simulation environment with reference to the 
classic AI planning problem of Blocks World (BW) [4]. BW has 
been a popular test domain with the Planning community because 
of its simplicity and was borrowed by the Distributed AI (DAI) 
and Multi-Agent Systems (MAS) community to study distributed 
planning and coordination. We extend BW into what we are 
calling Blocks World for Teams (BW4T). Teams consist of at 
least two, but usually more members. Additionally, we do not 
restrict the membership to artificial agents, but include and in fact 
expect human members. Study of joint activity of heterogeneous 
teams is the main function of the BW4T testbed. The goal of the 
BW4T game is to “stack” colored blocks in a particular order. To 
keep things simple, the blocks are unstacked to begin with, so 
unstacking is not necessary. 

In order to study joint activity of heterogeneous teams in a 
controlled manner, we extend the basic BW problem in a few 
ways. First, instead of having only one player, as usual in BW, for 
BW4T we allow multiple players as in the DAI and MAS work. 
Our approach is different in that players can be combinations of 
both human and artificial agents. Second, instead of having all the 
blocks visible on a table, we hide them in a series of rooms. 
Agents can only see blocks that are in the same room as they are 
(though this feature can be changed if the experimenter desires). 
This feature is usually added to force the coordination to be 
explicit, i.e., to force coordination through communication. 
Coordination can frequently occur through observation of the 
environment and non-verbal cues. While implicit coordination is 
another valuable area of study, these cues can be very difficult to 
detect and measure. Restricting the visibility will force explicit 
communication. A restricted chat window is provided for 
communication. By controlling the goal and the communication 
options, we can influence the need for coordination and type of 
coordination available during the joint activity. 

The most important variation on the problem we have made is to 
allow multiple players to work jointly on the same task. We 



control the observability between players and the environment. 
The degree of interdependence that is embedded in the task is 
represented by the complexity of color orderings within the goal 
stack. The task environment (Figure 1) is composed of nine rooms 
containing a random assortment of blocks and a drop off area for 
the goal. The environment is hidden from each of the players, 
except for the contents of the current room. Teams may be 
composed of two or more players, each working toward the 
shared team goal. Players cannot see each other, so coordination 
must be explicit through the chat window. The task can be done 
without any coordination, but it is clear that coordination (i.e., the 
players managing their interdependence) can be beneficial. 

 
Figure 1. BW4T – Two-player example 

3. INITIAL EXPERIMENTS 
3.1 Experiment 1: Adding Autonomy Without 
Addressing Interdependence 
A common suggestion for how to improve human-agent systems 
is to increase the level of agent autonomy. This solution is also 
commonly proposed for future systems. It is true that additional 
increments of agent autonomy might, in a given circumstance, 

reap benefits to team performance through reduction of human 
burden. 

However, there is a point in problem complexity at which the 
benefits of autonomy may be outweighed by the increase in system 
opacity when interdependence issues are not adequately 
addressed. The fundamental principle of Coactive Design is that, 
in sophisticated human-agent systems, the underlying 
interdependence of participants in joint activity is a critical factor 
in human-agent system design [9, 10, 11]. Another way to state 
this is that in human-agent systems engaged in joint activity, the 
benefits of higher levels of autonomy cannot be realized without 
addressing interdependence through coordination. 

 
Figure 2. A) Illustration of our experimental design approach. 
B) Expected effects of increasing autonomy on the burden of 
managing the agent and the opacity of the agent to other task 
participants. C) Expected performance under treatment 
conditions of increasing autonomy, due to the competing 
factors of agent management burden and agent opacity. 

Objective and Expected Results. Our goal was to demonstrate 
this claim empirically. We attempted to rule out over-trust in 
automation as a failure factor by ensuring that the agent players 
never made mistakes and that they exhibited reasonably intelligent 
behavior. We also attempted to ensure that the interaction between 
the human and the agent could be at a relatively high level of 
abstraction—i.e., that the agent’s capabilities for autonomy were 
not under-utilized. We did not want an agent capable of 
completing the mission autonomously managed at a low level 
akin to teleoperation. To this end, we provided an interface 
appropriate to agents' capabilities. These elements of our 
experimental design are illustrated in Figure 2 (A). 

Figure 2 (B) illustrates the general trends we expected to find in 
our results. We anticipated that the management burden the agent 
player imposed on the human player would decrease as agent 
autonomy increased. Such a finding would be no surprise, since 
reduction in human workload is both the common expectation and 
the major motivation for automation. However, we also 
anticipated that, without support for managing interdependence 
issues, the opacity of the work system to task participants would 
grow with increasing autonomy. Due to these competing factors 
of burden and opacity, we expected an inflection point in team 
performance, where the benefits of increasing autonomy 
eventually would be completely offset by the negative side effects 
of opacity. In other words, we predicted that the highest level of 
autonomy would not demonstrate the highest level of team 
performance, consistent with the general shape of the notional bar 
graph shown in Figure 2 (C) 

General Description of the Experiment. For each run of this 
experiment [5], we had a single human participate in a joint 
activity (collecting colored blocks in a specified sequence) with a 
single agent player. Both the human and the agent controlled a 
robot avatar. The agent teammate was directed by the human (i.e., 
participant or user) at levels of autonomy that varied in each 
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experimental condition. The agent was designed to perform 
reliably and with reasonably intelligent behavior. This means that 
the self-directedness is always sufficient for the self-sufficiency 
and thus the system cannot be over-trusted. This experiment also 
limited the command interface for each level to the highest 
possible command set, thus preventing under-utilization. As such, 
we were looking only at the burdensomeness and opacity of the 
system. 

Algorithm for Agent Behavior. The algorithm chosen as the 
basis for the agent behavior reflects the most common approach 
we observed for human players of the game. This algorithm was 
chosen because we felt it would be easily understandable and 
predictable for most human players. The algorithmic solution is 
shown on the left side of Figure 3. The main goal (a color 
sequence) is composed of several subgoals (individual colors). To 
achieve any given subgoal, one simply finds the block of the 
appropriate color and delivers it. Note that these tasks need not be 
performed in sequence or by the same player. For example, a 
player could first find all the blocks and then deliver them. 
Alternatively, one player could find a block and another could 
deliver it. The overall task can be thought of as being composed 
of several find tasks and several deliver tasks, which are 
themselves composed of some decision and action primitives. The 
action primitives include going to a room, entering the room, 
going to a block, picking up a block, and putting down a block. 
The two main decisions are: 1) whether to look for a block or to 
deliver a block, and 2) which room to go to in order to look for a 
block. The agent player is designed to perform its task “perfectly,” 
meaning it will perform any assigned task efficiently and will 
make rational decisions based on a complete and accurate 
recollection of where it has been and what it has seen in the past. 
It will also report when a task is completed. To be consistent, it 
only reports the completion status when an assigned task is 
completed, and does not provide any additional information. 

 
Figure 3. Autonomy Treatments for Experiment 1 

Autonomy Treatments. In Treatment 1, the human made all 
decisions and initiated all actions for the agent player. In essence, 
the human was manually controlling two robot avatars. This 
corresponds to Sheridan’s lowest level of autonomy. For 
Treatment 2 we automated most actions of the agent. All 
decisions remained with the human. We expected this automation 
would be preferred because it was reducing burden without 
adding opacity. Treatment 3 had all of the autonomous actions 
from Treatment 2 and also added an autonomous decision (i.e., 

which room to search). This increased opacity in two ways. First, 
the human is no longer aware of all of the decisions because one 
of them has been automated. Second, the robot has to make the 
decision without the same information the human had available 
when making the decision for the agent. Treatment 4 added 
automation of the remaining decision, making the task “fully 
autonomous.” This corresponds to Sheridan’s highest level of 
autonomy. 

Experimental Design. 24 participants (17 male and 7 female) 
were selected from a student population at TU Delft, with an age 
range of 19-39. We employed a complete randomized block 
design based on the autonomy treatment, with each participant 
performing each treatment once. The data are cross-classified by k 
= 4 autonomy treatments and b = 24 blocks, consisting of the 
individual participants. All participants received a demographic 
survey. They were trained on the game until they demonstrated 
proficiency by completing a simplified version of the task. Next 
they performed a series of trials, one for each treatment. The 
participant filled out a brief survey at the end of the experiment, 
evaluating team burden, opacity, performance, and preference in 
each treatment. 

Results. Our results include quantitative numeric data as well as 
subjective ranking data. For the former, we use standard 
approaches for normal data. For the ranked data, we used the 
nonparametric Friedman test. 

Assessing Burden. Our hypothesis predicted a decrease in agent 
management burden as autonomy increased from treatments 1 to 
4. This is depicted in Figure 4 (A). We asked the participants to 
rank how demanding it was to work with the agent in each 
condition, on a scale of 1 (least demanding) to 4 (most 
demanding). The results, shown in Figure 4 (B), indicate a very 
clear decrease in burden as autonomy increased. As a second, 
independent measure of burden, we also counted the number of 
commands the human player had to give to the agent teammate in 
each condition. Figure 4 (C) shows the results, which correlate 
with the subjective assessment. 

 
Figure 4. (A) Expected change in burden as autonomy 
increases (B) Subject ranking of agent management workload 
(burden) as autonomy increases across experimental 
treatments. (C) Average number of commands (Burden) as 
autonomy increases. 

Assessing Opacity. Our hypothesis predicted an increased subject 
perception of opacity with increasing autonomy across the 
experimental conditions. This is depicted in Figure 5 (A). We 
expected this to be reflected in reports of subjects having more 
difficulty in understanding what was happening and in 
anticipating the agent’s behavior as autonomy increased. An exit 
survey was used where subject were asked to rank their ongoing 
sense of awareness of current and future agent actions in the 
different conditions on a scale of 1 (most aware) to 4 (least 
aware). The results in Figure 5 (B) show opacity increasing with 
increasing autonomy as predicted. This confirms our prediction 



about opacity in this experimental setting, and validates the 
general expectation. 

 
Figure 5. (A) Expected change in opacity as autonomy 
increases (B) Average subjective ranking of awareness 
(opacity) as autonomy increases across experimental 
treatments. 

Quantitative Performance Assessment. We performed three 
different quantitative performance assessments: time to complete 
task, idle time, and error rate. 

The simplest performance metric is time to completion—i.e., 
delivering all the required blocks in the requested order. Figure 6 
shows the results. At first glance, the results appear promising. 
We can clearly see the inflection point where performance begins 
to degrade rather than improve under conditions of increasing 
autonomy, consistent with the prediction of Figure 2 (C). The 
differences, however, were not statistically significant (p = 0.20). 
We believe that this is best explained by the fact that the task 
itself has a large amount of variance from run to run, and the 
penalty incurred by errors is less than the variance between runs. 
We note, however, that in 83% of the participants, the highest-
autonomy condition (Treatment 4) was not the highest-performing 
condition by the time-to-completion criterion. 

 
Figure 6. Time-to-completion as autonomy increases across 
treatments. 

Another important performance measure is idle time (or wait time 
[6]). In the BW4T task, the agent player will be in near constant 
motion once a task has been assigned to it by its human teammate. 
Any idle time is indicative of inefficient use of the agent player 
(e.g., while it awaits the next command). Figure 7 (A) shows the 
results of average idle time for the agent player. There is a clear 
and significant decrease in idle time from treatment 1 to 4. On the 
surface, this could be taken as indicating more effective use of the 
agent player by the human, and thus suggesting improved 
performance. However, this is not borne out by the time-to-
completion results. Additionally, we note that the amount of work 
done is fairly consistent across treatments. For example, the 
number of rooms entered and the number of boxes delivered does 
not change much across treatments. This also makes sense when 

one looks at the human player’s idle time, shown in Figure 7 (B). 
There is a slight decrease in idle time as the burden is reduced, but 
not much, and certainly not on the order of the change seen in the 
agent player. This indicates that the interaction efficiency [6] is 
not that significant. This could be due to an effective interface, but 
it also can be due to the ability to multi-task and complete 
interactions concurrent with motion. The interesting takeaway 
lesson from this result is that “keeping your agent busy” does not 
equate to improved performance. 

 

Figure 7. (A) Average agent player idle time across treatment 
conditions. (B) Average human player idle time. 

For some kinds of tasks, error rate can be a good way to compare 
performance. We measured this in three ways. Our first was the 
amount of time that both players spent holding the same color 
block (Figure 8 (A)). Since, for this experiment, the goals were 
composed of unique colors (no repeats), this represented a 
measure of some fraction of overall redundant activity or 
inefficiency in task performance. This type of error, for the most 
part, only occurred in treatment 4 and is a side effect of the high 
opacity of the highest-autonomy condition. These results are no 
surprise, since this is the only treatment in which the agent player 
can make its own decision about which block to pick up. 
However, this does emphasize that functional differences matter 
when automating tasks [7]. 

 
Figure 8. (A) Average time holding the same color 
(inefficiency) (B) Number of lost boxes (C) Number of times a 
human player was blocked by their agent partner while trying 
to enter a room 

A second measure of error is the number boxes lost—i.e., dropped 
in the hallway or placed in the drop zone erroneously. Since 
BW4T is very simple, there were not many mistakes made by the 
human players, but of the ten lost boxes, 50% of them occurred in 
treatment 4 and 30% occurred in treatment 1, as shown in Figure 
8 (B). The boxes lost in treatment 1 were most likely due to the 
high workload imposed by the minimal amount of autonomy. 
However, treatment 4 does not have the obvious workload 
challenges of treatment 1. In fact, it was clearly ranked as the least 
burdensome, so why would it have the highest occurrences of 
errors? We believe the high error rate is a side effect of the high 
opacity of the highest-autonomy condition. 



Our third measure of error was the number of times a player was 
blocked while entering a room. This measure is indirect because it 
is possible that the most efficient act would be to wait outside a 
blocked door, but in general it indicates poor coordination. As 
shown in Figure 8 (C), the human player was blocked in treatment 
4 much more often, indicating significantly more coordination 
breakdowns than any other treatment. 

We asked the subjects to identify which team they felt performed 
best. Treatment 3 was the clear winner, with 63% of the 
participants selecting it as the best performing treatment (Figure 9 
(A)). Only 17% of the subjects choose treatment 4 as the best 
performing. 

 
Figure 9. (A) User Assessment of Performance vs. Autonomy 
(B) User Preference vs. Autonomy 

Human acceptance is an important component of overall system 
performance in tasks like ours. We asked the participants to rank 
the agents in each experimental condition with respect to their 
preference as to which one they would like to play with again, on 
a scale of 1 (most like to play with again) to 4 (least like to play 
with again). 

Figure 9 (B) shows the results. Treatment 3 was preferred with 
statistical significance. This result also demonstrates the inflection 
point anticipated by the increasing opacity in the system from 
Figure 9 (C). We suspect this is because in treatment 3 the human 
holds the overall plan, most of the context, and exercises the 
greatest degree of creativity. In this context, transparency and 
control (directability) may be more important than autonomy 
(independent operation), especially in light of the particulars of 
the autonomous task. 

We asked participants about the reasons for their rankings, and the 
responses were enlightening. Reasons for preferring Treatment 3 
included: 

• Shared information 
• Able to anticipate 
• Predictable 
• Low burden 
• Cleverest 
• Automatic, but still have control 

The first three reasons correlate with our predictions about 
opacity. The comment about low burden is interesting, because 
treatment 4 was objectively less burdensome. This comment 
suggests that there may be other types of burden besides the 
manual workload of tasking the agent. The comment about 
treatment 3 being cleverest is also interesting, because treatment 4 
is objectively the most capable (clever) based on what the agent 
can do on its own. Perhaps this suggests that sometimes being 
more independent may not necessarily lead to being viewed as 
more clever. The final reason is also important because it relates 

to the broader issue. We focused on opacity in order to keep the 
experiment simple, but predictability, directability and other 
challenges in making automation a team player [8] are no doubt 
also affected by increased autonomy. 

Summary. The results of our initial limited evaluation support 
our claim that increasing autonomy does not always improve 
performance of the human-machine system. In our example, 
increasing autonomy improved performance up to a point, but 
then there was an inflection point where performance decreased, 
depicted in Figure 10. We saw performance inflections in time, in 
error rates, and in user rankings. We propose that systems that fail 
to address interdependence adequate with have similar inflection 
points in performance. In the BW4T domain, this was principally 
due to opacity in the system, derived from increasing autonomy 
without accounting for the interdependence of the actions and 
decisions of the players and the coordination challenges this 
creates. Additionally, we showed how keeping an agent busy does 
not equate to improved performance, how human error rates are 
not only due to workload but can also be affected by opacity, and 
how user preference is not necessarily driven by reduced burden 
when other factors such as transparency, predictability and 
directability are relevant to the task. A key point to take away is 
that the ability to work with others becomes increasingly 
important as interdependence in the joint activity grows. It is 
possible that in complex and uncertain domains, this may be more 
valuable than the ability to work independently. 

 

Figure 10. Performance inflection point demonstrated by 
results 

It is obvious why opacity has such an effect on the system in the 
BW4T domain. The greater the autonomy of players, the greater 
the opacity, and hence the more room for coordination 
breakdowns. The independent activity in treatment 4 inhibited the 
team’s ability to engage in what most people would consider 
“natural” coordination, resulting in a breakdown of common 
ground [8] and reduction in each player’s individual situation 
awareness. This then caused suboptimal decisions and errors. 
While obvious in this simple, abstract domain, the problem 
remains prevalent in many systems today. Understanding the 
relationship of autonomy to interdependence is one step toward 
addressing the challenges facing future systems. We believe that 
consideration for interdependence while designing the 
autonomous capabilities of an agent can mitigate the effects 
demonstrated and will enable future systems to achieve greater 
potential. 



3.2 Experiment 2: Soft Interdependence as a 
Performance Factor 
In another experiment, we ran twelve subjects in various team 
sizes (2, 3, 4, 5, 6, and 8). The subjects were allowed to talk 
openly to one another. As the activity became more 
interdependent (more complex ordering of the goal stack), we 
noted an increase in the number of coordination attempts, as 
would be expected. We also noted some interesting aspects of the 
communication. Although only two basic tasks are involved, we 
observed a wide variety of communications. Of particular interest 
were the large number of communications that were about soft 
interdependencies and monitoring issues that were related to 
them. 

An example of a soft interdependency is the exchange of world 
state information. Since players could only see the status of their 
current room, they would exchange information about the location 
of specific colors. Although the task could clearly be completed 
without this communication, the importance of this soft 
interdependence is demonstrated by the frequency of its use. An 
example of monitoring in support of interdependence issues was 
when players provided or requested an update as a colored block 
was picked up. The frequency of both progress updates and world 
state updates are examples of the importance of addressing 
supportive interdependence in human-agent systems for joint 
activity. These types of exchanges typically accounted for 
approximately 60% of the overall communication and increased 
with the degree of interdependence required for a given problem. 
A final observation was that not only the amount of 
communication changed with the degree of interdependence in the 
task, but the pattern of communication varied as well. For 
example, during tasks with low interdependence, world state and 
task assignment were the dominant communications. As 
interdependence in the task (complexity in the ordering of the goal 
stack) increased, they both diminished in importance and progress 
updates became dominant. 

4. RT4T: A RECONFIGURABLE TESTBED 
FOR TEAMS 
In order to test more complex scenarios, we wanted to implement 
a new testbed that could tackle more challenging joint activity 
with increased ecological fidelity to envisioned real world 
applications. The domain initial domain we are focusing on is 
building clearing. While there are known tactics for room clearing 
by teams of soldiers, there is a potential for utilizing human-robot 
teams. Such teams would consist of human operators and semi-
autonomous robots that would collaboratively clear a building 
while maximizing the capabilities of each of the team members. 

Our scenario for this project is building clearing. In this scenario 
the team must ensure that the building is free of “bad guys” while 
escorting the "good guys" to safety. The team has to 
systematically cover the entire building as quickly as possible. 
Inside the rooms are some people (a few good guys and a few bad 
guys). The team must check every room thoroughly, remove all 
the people, and group the good and bad guys correctly. 

We can now import 3D models of arbitrary complexity into the 
simulation (e.g., as shown in Figure 11), but for our current 
experiments we have kept the environment simple to avoid 
confounding effects of variations in player’s spatial abilities. The 
simplified world is shown in Figure 12. We are also using a first 
person view (Figure 13) to more realistically represent the 
information that would be available to a player visually. 

Our testbed is Java based, which means it is cross-platform 
compatible. The graphics engine used is the Java Monkey Engine 
(JME), which is a free open source graphics engine that is actively 
developed. It is a multi-player game environment that will allow 
for any number of human or robotic players in any combination. 
We have complete control of the environment, which will enable 
us to flexibly extend beyond our initial experimental scenarios to 
address multiple types of activities. This will give us a richer test 
and evaluation platform to investigate our teamwork metrics. 

 
Figure 11. Complex building model 

 
Figure 12. Simplified model for initial building clearing 
experiments 

 

Figure 13. First person view 



The RT4T testbed has a server that allows configuration of the 
scenario. The server interface, shown in Figure 14, allows 
configuration of the scenario and control over the game. It also 
allows for a complete view of the entire simulation independent of 
any of the players. The server logs all team data and the current 
version has a simple visualizer for experimental results, shown in 
Figure 15. 

 
Figure 14. The RT4T server interface allows the configuration 
a scenario and provides an overview of the entire simulation 
in progress. 

 
Figure 15. Example RT4T visualization of experiment results. 

5. CATEGORIZATION OF MEASURES 
In developing a new suite of teamwork measures for our current 
experiments with RT4T, we have devised an initial high-level 
categorization that may prove useful in helping people understand 
and differentiate various types of experimental measurables 
(Figure 16). This categorization is based on temporal 
considerations, specifically: 

1. Design-time measurables represent the potential for effective 
work afforded by a given HART system in a specific context. 
In principle, they can be measured before any activity begins. 
(e.g., Flexibility: How many different options do you have 
for sensing an obstacle? Capacity: How many objects can 
you sense at once? Competence: How accurately can you 
sense an object?). 

2. Run-time performance measurables that represent a team’s 
success in leveraging design-time capabilities at run-time in 
a contextually appropriate way. Effective teams rely on an 
understanding of the talents and styles of teammates, 
recognize opportunities and needs to make adjustments to 
teamwork and taskwork, and are efficient and effective in 
applying these changes. 

3. Post-activity measurables include, among other things, 
tracking successes, failures, workload, and time to complete 
tasks. 

 
Figure 16. Categorization of Meastures 

Our categorization relates to a key goal related to each phase of 
measurement: adaptability potential, resilience, and robustness 
(see Table 1). 

Table 1: Teamwork Goals Related to Each Phase of 
Measurement 

Goal Conceptual Definition 

Adaptability 
Potential 

The latent potential for a team to perform its 
work in different ways, enabled by designing 
for flexible alternatives that harness available 
capacity and competence (measured at design-
time) 

Resilience The ability of a team to recognize problems 
and opportunities as the work is being 
performed, to successfully analyze appropriate 
alternatives for a given context, and then to 
change resources, roles, and goals efficiently 
and effectively (measured at run-time) 

Robustness The ability for a team to maintain effectiveness 
across a range of tasks, situations, and 
conditions (measured at post-activity time) 



Why is this important? First, a given measure can only give you 
certain types of information. For example, post-activity analysis 
usually provides a direct measure of performance (e.g., efficiency 
or effectiveness), while other measures are used in an attempt to 
help us learn about possible factors that may contribute to 
performance. In other words, post-activity measures often cannot 
tell you the cause unless linked to an indirect measure from one of 
the other two categories. As an example, consider two robots that 
must navigate a course. They both complete the course in five 
minutes, so can we conclude that their performance was 
equivalent? Of course not. 

Fortunately, the other measures of design-time and run-time 
provide additional insight. Consider that the first robot may only 
have a top speed (design-time measure) of half that of the second 
robot. This would indicate that the second robot should have done 
better. Consider that the second robot may have made several bad 
navigation choices (run-time measure) that caused this. 
Fundamentally, the reason behind all of these proposed measures 
is to ferret out the potential causes that are driving the 
performance measures. Most of these are run-time measures (e.g. 
what are you going to do next?). Some also touch on design-time 
measures if they are focused on understanding different player 
capabilities (e.g., who could assist you?) instead of the run-time 
version that also includes current context (e.g., who could assist 
you right now?). 

Another nice characteristic of this way of categorizing is that it 
provides us a way to design experiments. For example, we may 
want to focus on flexibility, so we ensure the experiment is 
designed to have a low competence requirement. We could also 
control for flexibility and measure how well the system can 
recognize opportunities and leverage them. 

The next phase of our work will be focused on refining and 
formalizing the measurement framework through further 
experimentation. RT4T will provide invaluable help in 
understanding which teamwork measures are most important and 
how these measures relate to one another. 
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