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Abstract 

 
Knowledge acquisition is a constructive modeling process, not simply a matter of “expertise 
transfer.” Consistent with this perspective, we advocate knowledge acquisition practices and 
tools that facilitate active collaboration between expert and knowledge engineer and that support 
knowledge-based system development from a life cycle perspective. Serious problems of 
modeling can often be traced directly to the inadequacies of the particular knowledge 
representations used at a given stage of development. To counter these problems, we propose an 
approach to knowledge representation for knowledge modeling that distinguishes between 
external, conceptual, and internal schemata. As an implementation of the external schemata, we 
emphasize the use of mediating representations which serve as a means of communication 
between expert and knowledge engineer. Intermediate representations implement the conceptual 
schema, and help bridge the gap between the mediating representations and a particular 
implementation formalism. DDUCKS is described as an example of an “open architecture” 
constructivist knowledge modeling environment embracing the modeling perspective and built 
around collections of mediating and intermediate representations. The architecture of DDUCKS 
facilitates reuse and tailoring of models and tools. We conclude with a discussion of the issues in 
design and evaluation of mediating representations. 
 

1. Introduction: Model-based Knowledge Acquisition 
 
Recent work in knowledge acquisition has emphasized that the creation of knowledge bases is a 
constructive modeling process, and not simply a matter of “expertise transfer” or “design 
knowledge capture” (e.g., Bradshaw & Boose, 1990; Clancey, 1990; Cox, 1991; Ford, Bradshaw 
& Adams-Webber, 1992; Gruber, 1990; Musen, 1989; Shaw, Woodward & Gaines, 1990; 
Wielinga, Akkermans, Schreiber & Balder, 1989). For this reason, use of the term knowledge 
modeling is beginning to replace the term knowledge acquisition to describe activities in this 
field. 
 
Modeling is purposive, that is, to be involved in modeling is necessarily to be engaged in using 
the model in some particular setting for particular reasons that determine what should be 
modeled, how to model it, and what can be ignored (Thimbleby, 1990; Winograd & Flores, 
1986). Together, the criteria of purpose and cost-effectiveness determine how additional 
pragmatic issues should be resolved such as who the users of the model are, how it ought to be 
presented in order to be both usable and useful, and how it will be maintained over its projected 
lifetime (Rothenberg, 1989). This modeling perspective implies the need for active participation 
by both experts and knowledge engineers in the creation of knowledge bases. 
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In a model-based approach to knowledge acquisition, experts and knowledge engineers 
cooperatively build models comprising explicit representations of the processes and concepts in 
the domain. We are not implying that the model will necessarily be the basis of the performance 
system (as would be the case in a model-based reasoning system), but rather that it can constitute 
a rich description of a problem domain that is initially independent of a particular 
implementation formalism. 
 
The view of knowledge acquisition as a modeling activity runs counter to the idea that the 
process consists of “mining those jewels of knowledge out of [the experts’] heads one by one” 
(Feigenbaum & McCorduck, 1983, p.2). Such a perspective erroneously assumes that there exists 
some ‘gold standard’ of knowledge and that a domain expert is one who has captured a discrete 
(presumably large) part of the ‘reality’ underlying observed events in the relevant domain. This 
‘mining analogy’ is both fundamentally at odds with cognitive science theory (see e.g., Agnew & 
Brown, 1989a, b), and dangerously misleading as a metaphor for the guidance of knowledge 
acquisition practice. Expertise is not a natural resource that can be extracted, harvested, 
transferred, or captured. Experts involved in knowledge acquisition are not restating a coherent 
body of knowledge that already exists in their minds; rather they are engaged in a constructive 
modeling process, in the context of which formal representations are newly created and shaped 
(Clancey, 1989; Ford, Bradshaw & Adams-Webber, 1992). 
 
From a constructivist perspective, a model is not a ‘picture’ of the problem, but rather a device 
for the attainment or formulation of knowledge about it (Kaplan, 1963). Often, the most 
important outcome of a knowledge acquisition project is not the resulting knowledge-based 
system, but rather the insights gained through the process of articulating, structuring, and 
critically evaluating the underlying model (Moore & Agogino, 1987). From this, we infer that 
the value of the knowledge acquisition effort may derive not simply from a final ‘correct’ 
representation of the problem, but additionally from our success in framing the activity as a self-
correcting enterprise that can subject any part of the model to critical scrutiny, including our 
background assumptions. From this standpoint, the crucial question for knowledge engineers is 
not “How do we know the model is correct?” (every model is an incorrect oversimplification); 
but rather “How useful is the model (and the modeling process) in facilitating our understanding 
of the domain?” 
 
Our understanding of models and the modeling process entails a life cycle perspective on 
knowledge acquisition. Knowledge modeling does not culminate at some arbitrary point in 
development, but rather extends throughout the life of the system. It follows that knowledge 
modeling tools must support the gradual evolution of the model through numerous cycles of 
refinement. 
 
Each phase of development activity imposes its own requirements and difficulties. Serious 
problems of knowledge modeling can often be traced directly to the inadequacies of the 
particular knowledge representations used at a given stage of development. Many tools are 
limited in both their repertoire of modeling representations and their support for evolution and 
transformation of representations. The ideal knowledge modeling tool would support a smooth 
transition of the model from an easily communicated, relatively unconstrained statement of the 
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problem to an unambiguous specification of design. A number of changes in representation may 
be required to accompany successive stages in model construction: from mental models to 
increasingly refined conceptual models via elicitation and analysis techniques, and eventually, 
from these highly elaborated models to an operational knowledge base via formalization and 
implementation procedures (Shaw & Woodward, 1989; Shaw, Woodward & Gaines, 1990; 
Figure 1). 
 

 
 

Figure 1. The ideal knowledge acquisition tool would support a smooth transition of the model 
through different phases of the knowledge engineering process (Figure adapted from Shaw & 

Woodward, 1989). 
 
Unfortunately, the emphasis given to rapid prototyping in traditional accounts of knowledge 
acquisition, along with the faulty notion that ‘the production of working code is the most 
important result of work done’, often leads to the premature encoding of knowledge in an 
implementation formalism associated with a specific performance environment (Bradshaw & 
Boose, 1989; Figure 2). The unfortunate result is that no independent description of the model 
will exist other than the rule base itself and possibly some glossaries in the help information of 
the system (Johnson, 1989). 
 

 
 

Figure 2. Depiction of traditional view of knowledge acquisition. 
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The problems of premature encoding of knowledge in implementation-driven representations 
have spurred efforts to develop other representations that more adequately support the early 
stages of conceptual modeling. We call these mediating representations. 
 
 
 

2. The Role of Mediating Representations 
 
Mediating representations (e.g., repertory grids, network diagrams) are designed to reduce the 
problem of representation mismatch, the disparity between a person’s natural description of the 
problem and its representation in some computable medium (Gruber, 1989). They provide a 
bridge between verbal data and typical knowledge representation schemes such as production 
rules (Johnson, 1989; Bradshaw, Ford, & Adams-Webber, 1992). Work on mediating 
representations for knowledge modeling parallels work on visual programming languages for 
software engineers (e.g., Chang, 1990; Ichikawa & Chang, 1990). 
 
The term mediating representation has various interpretations in the literature, however we take 
it to “convey the sense of… coming to understand through the representation” (Johnson, 1989, p. 
184). A crucial feature is that mediating representations should be “easily readable by those who 
were not involved in the original development programme…” (Diaper, 1989, p. 34). This is 
essential, since executable knowledge bases are seldom organized for direct use by humans, but 
instead for the convenience of the reasoning mechanisms of the performance environment. The 
design of a mediating representation, on the other hand, should be optimized for human 
understanding rather than machine efficiency. 
 
Effective mediating representations make important things explicit and hide unnecessary detail. 
They expose natural constraints, facilitate computation, and are complete and concise (Winston, 
1984). The choice of representation can have an enormous effect on human problem solving 
performance (e.g., Larkin & Simon, 1987). As an example, consider that we can represent 
numbers as Arabic numerals, Roman numerals, or as bits in computer memory. While each of 
these forms are logically equivalent, they are not the same in a practical sense. It is much more 
efficient for a computer to multiply numbers represented as bits than as numeric symbols. 
Similarly, from a human perspective, it is easier to do multiplication with Arabic numerals than 
with Roman numerals or binary numbers. Narayanan, Chandrasekaran, Iwasaki and Simon 
(1991) state that: “The power of diagrammatic representations stems from the property that they 
allow the explicit representation and direct retrieval of information that can be represented only 
implicitly in other types of representations and then has to be computed, sometimes at great cost, 
to make it explicit for use.” 
 
Wielinga, Akkermans, Schreiber & Balder (1989) present a number of compelling arguments for 
making a clear distinction between knowledge-level conceptual models and implementation-
focused design models in the knowledge-based system development process (see also Schreiber, 
Akkermans & Wielinga, 1990). Sowa (1987) has likewise argued that considerations of human 
efficiency far outweigh considerations of machine efficiency for complex modeling problems. 
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He observes that, since the time used for transformation from one knowledge representation to 
another is linearly proportional to the length of the formula, a change of notation increases 
efficiency by constant factor: 
 

“But if a problem is truly NP hard, a change of notation will not make it solvable in 
polynomial time. Yet, because one notation for logic can always be translated into 
another, it is possible to do the input and output in a form that has the best human factors, 
and than translate it to the form that has the fastest theorem prover. Although the issues 
of machine efficiency are not irrelevant, for knowledge representation and acquisition, 
they are less important than naturalness and ease of use…” (see also Sowa, 1991) 

 
Work on mediating representations aims to improve the knowledge modeling process by 
developing and improving representational devices available to the expert and knowledge 
engineer (Ford, Bradshaw & Adams-Webber, 1991). A mediating representation provides an 
explicit external medium in which experts can build a model (Figure 3). Whatever structure is 
inherent in the form of representation provides grounding constraints that both facilitate 
expression within the set of conventions adopted, and enforce comprehensibility and consistency 
by preempting certain possibilities. The mutual development of permanent “cognitive artifact” 
supplementing the exchange of information between participants promotes and enriches 
communication, leading gradually to a shared understanding of the emerging conceptual model 
of the domain (Norman, 1988, 1991). In this way, mediating representations enable domain 
experts and knowledge engineers to cooperatively build problem solving models. In the later 
stages of system development, mediating representations may also facilitate maintenance and 
explanation by enabling both knowledge engineers and the people eventually using the system to 
explore the conceptual domain model without resorting to low-level representations (e.g., C 
code, Lisp, rules). 
 

 
 

Figure 3. Mediating representations facilitate communication 
between domain expert and knowledge engineer. 

 
A number of automated knowledge modeling tools have incorporated effective mediating 
representations. These tools tend to adopt one of two approaches. Either they contain interfaces 
that bear a close resemblance in appearance and procedure to the original manual task—for 
example, cancer-therapy protocol forms in OPAL (Musen, 1989) and engineering notebooks in 
vmacs (Sivard, Zweben, Cannon, Lakin & Leifer, 1989), or they rely on some easily-learned, 
generic knowledge representation form—for example, repertory grids and directed graphs 
(Boose & Bradshaw, 1987; Eisenstadt, Domingue, Rajan & Motta, 1990; Ford, Stahl, Adams-
Webber, Cañas, Novak & Jones, 1991; Gaines & Shaw, 1986a) 
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3. The Role of Intermediate Representations 
 
Since modeling is a process of iterative refinement, we would like to be able to map back and 
forth from the kinds of representations used in performance environments to mediating 
representations that are more useful for communication purposes. For example, initial 
approaches to knowledge acquisition in ETS (Boose, 1984, 1986a), KSS0 (Gaines & Shaw, 
1986b), and Nicod (Ford, 1987; Ford, Petry, Adams-Webber & Chang, 1991) embodied 
procedures for transformation from repertory grids to rules. This was found to be a useful and 
productive step for knowledge engineers, particularly in the early prototyping phases of a 
project. Some kinds of information, however, could not be conveniently represented in simple 
repertory grids. Furthermore, this was essentially a one-way procedure—while the kinds of 
knowledge available in repertory grids could be transformed to rule sets, in most cases there was 
no natural mapping from rules back to grids. 
 
Over time the semantic gap between modeling systems and performance systems has widened 
dramatically. A distinguishing characteristic of some of the newer knowledge modeling tools is 
the degree to which they promote the use of multiple perspectives on the same information. They 
also exemplify the push toward informal textual, graphical, and multimedia forms of knowledge 
representation (Boy, 1991; Eisenstadt, Domingue, Rajan & Motta, 1990; Gaines & Boose, 1991). 
As new mediating representations have increased the richness, complexity, and subtlety of the 
knowledge elicited by automated knowledge modeling tools, a requirement has emerged for 
intermediate representations. Intermediate representations can integrate the diverse perspectives 
presented by the mediating representations. They help bridge the gulf between human 
participants and the implementation formalism required by the performance environment. In 
addition, intermediate representations facilitate the integration of knowledge modeling and 
performance systems, allowing rapid feedback throughout the process of system development 
(e.g., Shema & Boose, 1988; Linster & Gaines, 1990). 
 
Figure 4 outlines a three-schemata architecture for knowledge modeling tools, with mediating 
representations as external schemata, the intermediate representation corresponding to a 
conceptual schema, and the knowledge base or database as an internal schema. The external 
schemata are optimized for communication, the conceptual schema for semantic completeness, 
and the internal schema for performance. Obvious similarities will be seen between our 
suggested architecture for knowledge modeling tools and the proposed ANSI-SPARC three-
schema model for data management. The definitions for the three schemata given by van 
Griethuysen and King (1985) provide a good summary of this perspective: 
 

“The… conceptual schema controls what is described in the information base. The 
conceptual schema controls the semantic meaning of all representations, that is, defines 
the set of checking, generating, and deducing procedures of the information at the 
conceptual level in the information system. 
 
The external schemata describe how the users wish to have the information represented. 
The external processor interfaces directly with the users and coordinates their 
information exchange. 
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The internal schema describes the internal physical representation of the information… 
The mapping between the external schemata and the internal schema must preserve 
meaning as defined by the conceptual schema.” 

 
This approach allows views containing mediating representations to be coupled to the underlying 
intermediate representation so that any changes made to one view may be immediately reflected 
in all related views. Knowledge analysis and performance tools may be similarly designed to 
exploit the integration of information at the intermediate level. 
 

 
 

Figure 4. Three-schema architecture for knowledge 
acquisition tools 

 
An intermediate knowledge representation is one “which only exists between flanking 
representations and is bound to them by clearly defined projection rules which map one 
representation to the next” (Johnson, 1989, p. 184). The issue of mapping between 
representations is a troublesome one. For one thing, it is obvious that much of what can be 
modeled in mediating representations cannot be directly incorporated into the current 
commercial performance systems. Furthermore, since every transformation of knowledge is a 
reconstruction of that knowledge, we know that, even if logical equivalence as part of 
representational mapping is assured, we cannot assume practical or even conceptual equivalence. 
For these and other reasons, automated mapping between representations will continue to be an 
issue, and some amount of manual mapping from one representation to another will remain 
common practice. Whether mapping is automatically assisted or manual, informal or formal, 
does not obviate the need for integrative, intermediate representations that are relatively 
independent of the constraints of the delivery environment. 

4. DDUCKS: Decision and Design Utilities for Comprehensive Knowledge 
Support 
 
Early knowledge-based tools generally made strong assumptions about their operating 
environment. At first, dedicated, stand-alone applications were the rule. Over time, as the value 
of adding “hooks” for access to external applications and data was realized, most knowledge-
based tools still operated under the assumption that they were in ultimate control of the system as 
the highest level executive. Currently, the greatest potential for use of knowledge-based systems 
is in areas requiring close interaction with traditional software applications and data. An 
application that assumes it is in ultimate control will be ineffective in such environments. 
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Brodie (1989) has discussed the need for intelligent interoperability in information systems. He 
defines the term to mean intelligent cooperation among systems to optimally achieve specified 
goals. While there is little disagreement that future computing environments will consist of 
multiple heterogeneous software systems running on multiple heterogeneous machines, most 
knowledge-based systems are disjoint: they do not communicate. 
 
To facilitate intelligent interoperability between knowledge acquisition tools and other software, 
we are in the process of implementing an “open architecture” integrating environment that 
allows for a high degree of connectivity among knowledge modeling tools and commercial 
software (Figure 5; Bradshaw, Covington, Russo & Boose, 1990, 1991). This environment is 
called DDUCKS (Decision and Design Utilities for Comprehensive Knowledge Support)1.. 
Previously, individual components of DDUCKS have been applied to prototype a number of 
specific applications. As part of a Boeing project called Design of Information Systems or DIS 
(Benda, 1990), we are exploring how knowledge modeling and decision support tools can work 
cooperatively with one another and in conjunction with commercial applications such as 
spreadsheets, databases, or hypermedia software, within a computer-supported meeting 
environment (Boose, Bradshaw, Koszarek & Shema, 1992). 
 
DART. DART (Design Alternatives Rationale Tradeoffs) is a repertory-grid-based knowledge 
acquisition tool. It was originally developed with funding from NASA as part of an effort to 
capture design knowledge for the Space Station Freedom program (Boose, Shema & Bradshaw, 
1990). Similar tools and concepts have been under development at The Boeing Company for 
many years (Boose, 1984; Boose & Bradshaw, 1987; Boose, Bradshaw, Kitto & Shema, 1989; 
Boose, Shema & Bradshaw, 1989). DART contains a number of elicitation, analysis, 
representation, and inference methods derived from personal construct theory (Kelly, 1955). 
 
Canard. Canard is a knowledge acquisition tool that can be used to generate and structure 
complex alternatives (Bradshaw, Boose, Covington & Russo, 1989; Shema, Bradshaw, 
Covington, and Boose, 1990; Bradshaw, Shema, & Boose, 1992). Links are maintained between 
the tables and underlying repertory grids. The possibility table representation is based on the 
manually developed strategy tables (McNamee & Celona, 1987) and morphological charts 
(Zwicky, 1969) that have been used by decision analysts and designers for many years. Canard 
automates this representation and extends its logic and structure to allow knowledge-based 
inference and the representation of more complex problems (e.g., hierarchical tables, explicit 
representation of constraints). 
 

                                                
1 Either the first or second D in DDUCKS is silent, depending on whether one is using it for decisions or design. 
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Figure 5. DDUCKS integrates components from Axotl, 
DART, and other applications. 

 
Axotl. Axotl combines a influence-diagram-based decision analysis workbench with knowledge-
based tools to assist individuals consulting with decisions involving high stakes, difficult 
tradeoffs, or critical uncertainties and risks (Bradshaw, Covington, Russo, & Boose, 1990, 1991). 
The knowledge-based tools in Axotl can be configured with application-independent knowledge 
(i.e., knowledge of decision analysis tools and methodology) and application-specific knowledge 
(i.e., knowledge about a particular domain) to provide guidance and help during a consultation. 
The relationship between personal construct theory and decision theory is discussed in Bradshaw 
& Boose (1990). An additional set of tools (which go by the name of eQuality) assist users in 
modeling and executing the decision making process, and in rigorously modeling and analyzing 
the entities and processes involved in the enterprise of which the decision is a part (Bradshaw, 
Holm, Kipersztok, Nguyen & Covington, 1992). eQuality is being implemented in a new version 
of the framework called Axotl II. 
 
MANIAC. MANIAC (MANager for InterApplication Communication) supports asynchronous 
and synchronous communication between any number of multitasking applications. Plans for 
coordination among applications are modeled and executed using knowledge-based capabilities 
in Axotl, while MANIAC provides the infrastructure for the actual message passing. Originally 
implemented as a driver in the 6.x version of the Macintosh operating system, MANIAC is 
currently being updated to take advantage of new interapplication communication features in 
version 7.0. Future versions may support additional hardware and software platforms. 
 
In the following section, we will explain how DDUCKS provides an architecture for reuse and 
tailoring. Next, we will discuss mediating and intermediate representations used in DDUCKS, 
and an organization tool called the project notebook. Then we will briefly describe applications 
of DDUCKS within The Boeing Company. 
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4.1. An Architecture for Reuse and Tailoring 
 
Because building knowledge modeling tools is labor intensive, their development can usually be 
justified only if they can be easily applied to more than a single application. Knowledge 
modeling tool developers interested in deriving the most benefit from their tools may look for 
areas consisting of several problems that can each be characterized by a general task model 
(Boose, 1989; Klinker, 1989). Knowledge modeling tools can then be created that both fit the 
general task model and are tailorable to several specific problems. 
 
Musen (1989) was one of the first to present an explicit, general approach to creating tailorable 
knowledge modeling tools. Knowledge modeling tools are tailored using a meta-level knowledge 
modeling tool to edit a domain-independent conceptual model (see also Puerta, Egar, Tu & 
Musen, 1991). The meta-level tool, PROTOGE, provides a system to generate knowledge editors 
tailored for various classes of treatment plans. Physician experts can then use the knowledge 
editors created by PROTEGE to develop knowledge bases (e.g., OPAL) that encode specific 
treatment plans in their medical specialty; the resulting systems (e.g., ONCOCIN) could then be 
used in turn by attending physicians to obtain therapy recommendations for a particular patient. 
 
Besides the reuse of task models, a number of researchers have also emphasized the importance 
of a common ontology in achieving sharable, reusable knowledge bases (e.g., Gruber, 1991; 
Lenat & Guha, 1990; Neches, Fikes, Finin, Gruber, Patil, Senator & Swartout, 1991; Skuce, 
1991a). Alexander, Freiling, Shulman, Rehfuss, and Messick (1988) introduced ontological 
analysis as a knowledge modeling technique for the preliminary analysis of a problem-solving 
domain (see also Wielinga, Schreiber & Breuker, 1991). As one of the first steps in knowledge 
modeling, we carry out a knowledge level conceptual analysis of the domain, which consists of 
building a rich model of static, dynamic, and epistemic knowledge. The initial conceptual model 
produced by this analysis can be extended by designers and users of the system and applied 
directly to problem-solving as described below. 
 
We aim to maximize reusability and tailoring of models and tools by generalizing Musen’s 
approach. It is useful to think of DDUCKS in terms of four layers of functionality: workbench, 
shell, application, and consultation (Figure 6). 
 
The workbench consists of five major elements: 
 

•  methodology-independent problem-solving task models (e.g., heuristic classification, 
constraint satisfaction); 

• generic interaction paradigms (see section 4.2 below; e.g., graph view, matrix view, 
various widgets); 

• a methodology-independent ontology (a specification of the abstract schema; e.g., 
generic object types such as entity, relationship); 

• application-configuration process models (i.e., model of how to configure the 
workbench for a particular application such as process management, decision support, 
or design); 

• a standard library of inference types and functions (e.g., mathematical and logical 
mechanisms that implement problem-solving, analysis, or simulation procedures). 
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An instance of a shell, created by using the knowledge modeling facilities generated by the 
workbench, may contain: 
 

• methodology-specific problem-solving task models (e.g., maximization of expected 
utility across decision alternatives, hierarchical constraint satisfaction using extended 
AND-OR graphs, process optimization through event-based simulation) 

• methodology-specific mediating representations created out of the combination of 
generic interaction paradigms with a particular semantic and possibly computational 
interpretation of the elements (e.g., process views, influence diagrams, repertory grids); 

• a methodology-specific ontology (a specification of the schema itself; e.g., activities, 
performers; decision and chance nodes; elements and constructs); 

• methodology-specific model-building process models (i.e., knowledge about how to 
acquire application-specific knowledge within the context of a methodology); 

• methodology-specific extensions to the inference and function library. 
 

 
 

Figure 6. Layers of functionality facilitate reusability (inspired by figure from Musen, 1989). 
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An instance of an application, created by using the knowledge modeling facilities generated by 
the shell, may contain: 
 

• application-specific problem-solving task models; 
• application-specific mediating representations (e.g., form-filling interfaces tailored to 

R&D investment decision makers, engineering process modelers, or space station 
designers that may be used in place of influence diagrams, generic process views, or 
grids); 

• an application-specific ontology (extensions to the schema that become the modeling 
primitives for the application; e.g., go/no-go investment decision nodes, technical risk 
chance nodes; airplane design-build activities; alternatives and criteria); 

• application-specific model-building process models (i.e., knowledge about how to 
conduct a consultation with clients such as R&D investment decision makers, 
airplane design-build process improvement team members, or space station 
designers); 

• application-specific extensions to the inference and function library. 
 
An instance of a consultation, created by using the consultation facilities generated by the 
application, may contain: 
 

• situation-specific problem-solving task models (e.g., a model for a particular 
business, design, or decision-making process). 

• situation-specific mediating representations (e.g., text and graphical annotation of 
views on the model); 

• situation-specific model components (e.g., decision and chance nodes for a particular 
project decision model; activity and entity instances for a particular enterprise model; 
alternatives and criteria for a particular design decision); 

• Situation-specific facts and assertions (e.g., particular information about a situation); 
• situation-specific functions and inferences. 

 
The complete situation-specific model represents the unique characteristics of a particular 
problem and comprises all the information mentioned above. This model is formulated, 
evaluated, and analyzed during the consultation to produce recommendations for action or for 
further model refinement. 
 

4.2. Interaction Paradigms Related to Mediating and Intermediate 
Representations 
 
Figure 7 is a view of knowledge representation in DDUCKS . The intermediate representation 
(i.e., enterprise model) consists of entities, relationships, and situations as the primary concepts, 
and domains, properties, and constraints as secondary concepts. We are evaluating a version of 
Axotl II that uses CODE version 4 as the underlying semantic representation language (Skuce, 
1991b, c; Lethbridge, 1991). We have derived our general taxonomy for conceptual modeling 
from Tauzovich and Skuce (1990), with extensions for dynamic and epistemic aspects of the 
model. CODE provides a rich, paradigm for the definition of knowledge level concepts. These 
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concepts are arranged in an inheritance network using a flexible inheritance mechanism. The 
emphasis in CODE is on providing tools to support the important and frequently overlooked 
aspects of conceptual, ontological, and terminological analysis. Several associated semantic 
subsystems, such as a first order logic system and a simple natural language system, allow 
various types of syntactic and semantic checks to be performed, if desired. A comprehensive 
lexicon allows references to concepts to be automatically maintained and quickly accessed. We 
have found the rich semantic representation of terms and concepts to be of great importance 
throughout the life of a project. 
 
User-interface management systems (UIMS) are becoming an essential part of interactive tool 
development and end-user tailoring (Hix, 1990). We are extending the capabilities of a 
Smalltalk-80-based direct-manipulation user-interface builder to form the building blocks for the 
views in DDUCKS (Laland, Novotny, Enzer & Bortz, 1991). The tools in DDUCKS rely on the 
Smalltalk-80 MVC (model-view-controller) concept for managing consistency among views 
(Goldberg, 1990; Krasner & Pope, 1988; Adams, 1988b). The MVC approach provides a way to 
effectively factor out the data in an underlying model from the data in dependent views, so that 
changes to the model in one view are immediately reflected in all related views. Class hierarchy 
mechanisms in Smalltalk-80 allow generic views of a certain sort to be easily specialized for 
different purposes. This, in conjunction with the DDUCKS UIMS, has allowed us to define 
many different views on similar aspects of the model, as well as several similar views on 
different aspects of the model. 
 

 
 

Figure 7. The intermediate representation in DDUCKS, surrounded by examples of generic 
interaction paradigms, and mediating representations. 

 
The six views surrounding the intermediate representation correspond to the generic user-
interface interaction paradigms that are implemented as abstract “pluggable” view classes 
(Krasner & Pope, 1988; Adams, 1988a, b). These views are generic in the sense that they define 
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the graphical form for the representation, but the form has no underlying semantics. Within 
DDUCKS, various configurations of these interaction paradigms can be called up as sketchpad 
views to record free-form graphical and textual information. For example, individuals and groups 
can capture back-of-the-envelope drawings, agendas, issues, action items, requirements, and 
other information pertinent to their task. While not part of the formal model, users can link 
elements within sketchpad views to elements in other views in hypertext fashion. 
 
By combining one or more of these generic interaction paradigms with a semantics defined in the 
intermediate representation and (for some representations) the problem-solving method, 
methodology-specific or application-specific mediating representations are defined. Mappings 
are defined between graphical actions in the model views and operations on logical entities, 
relationships, and properties in the enterprise model. For example, influence diagrams combine a 
graph view with the concepts of decision, chance, and value nodes and the problem-solving 
method of maximization of expected utility across decision alternatives. Trade study matrices (a 
methodology-specific kind of repertory grid) are built out of a matrix view, the concepts of 
alternatives, criteria, and ratings, and a heuristic classification problem-solving method. Process 
views combine a graph view with the a formal definition of activities and relationships between 
them. Type definition views allow the users to extend the ontology. We call all these 
representations model views, because they portray different perspectives on the formal enterprise 
model. By virtue of the Smalltalk-80 model-view-controller paradigm, consistency is 
continuously maintained for all model views portraying the same version of the enterprise model. 
 
The volume and diversity of information that can be represented in DDUCKS drives a 
requirement for ways to manage, organize, and link that information. A virtual project notebook 
helps team members collect and organize the diverse materials associated with a particular 
knowledge acquisition project. It also helps manage changes between different versions and 
views of the model as it evolves. The project notebook can assist in planning and modeling 
activities throughout the life of the project. Using project notebook templates, groups can tailor 
the contents of the boiler plate project notebook to be consistent with their own preferences for 
accessing, viewing, and using the information. For example, a process improvement team’s 
blank notebook can come pre-configured with information about organizational standards (e.g., 
required entity and icon types, reporting forms) and procedures (e.g., required steps in a project 
plan), just as a real notebook could be pre-loaded with labeled dividers and forms. In addition to 
its obvious use in managing information about the model, the project notebook supports the team 
as a simple computer-supported meeting facilitation tool and as a form of group memory. 
 

4.3. Applications 
 
Various combinations of DDUCKS components have been evaluated with respect to several 
different kinds of problems. These have included: 
 

• rapid prototyping for expert systems (Boose, 1984; 1986a); 
• analysis and conflict resolution of knowledge from multiple experts (Boose, 1986b); 
• knowledge acquisition and delivery of knowledge-based systems for heuristic 

classification problems (Boose & Bradshaw, 1987; Boose, Shema & Bradshaw, 
1989); 
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• acquiring and verifying control knowledge for a blackboard system (Baum, Shema, 
Boose & Bradshaw, 1989); 

• evaluation of training course effectiveness (Schuler, Russo, Boose, & Bradshaw, 
1990); 

• assisting R&D managers to make project investment decisions involving substantial 
uncertainty, risk, and complex tradeoffs (Bradshaw, Covington, Russo & Boose, 
1990, 1991); 

• design knowledge capture for a Corporate Memory Facility for NASA’s Space 
Station Freedom (Boose, Shema & Bradshaw, 1990; Bradshaw, Boose & Shema, 
1992); 

• alternative generation and constraint management for synthesis and design problems 
(Bradshaw, Boose, Covington & Russo, 1989; Shema, Bradshaw, Covington & 
Boose, 1990; Bradshaw, Shema & Boose, 1992); and 

• documentation and streamlining of business processes (Bradshaw, Holm, Kipersztok, 
Nguyen & Covington, 1992). 

 
As part of the DIS project, we are implementing enhancements to these individual tools, and 
developing and evaluating a methodology for their joint use in an electronic meeting room 
setting (Boose, Bradshaw, Koszarek & Shema, 1992). 

5. Discussion: Design and Evaluation of Mediating Representations 
Some of the most important unresolved issues about mediating representations concern how they 
should be designed and evaluated (Tortora, 1990). Most of the past work in this vein has been 
guided by intuition rather than principle, and evaluated by anecdote rather than empirical 
analysis. While some amount of this is unavoidable (and in fact desirable), we must do more to 
develop a theory-based mediating representation design methodology (see e.g., Carroll, Kellogg 
& Rosson’s (1991) discussion of the task-artifact cycle). Casner and Larkin (1989), for example, 
have begun to apply recent research in how representation affects problem solving to guide the 
definition of a principled methodology for designing effective perceptual codes and 
interpretations that support particular kinds of tasks. Criteria, derived from Johnson (1989, p. 
185) and Winston (1984) also suggest general rules-of-thumb for evaluating the effectiveness of 
a representation: 
 

• Is the formalism sufficiently expressive? 
• Does the formalism aid communication between the members of the development 
team? 
• Does the formalism actually guide knowledge analysis in a significant way? 
• Does it make the important things explicit, suppressing detail and keeping rarely 

used information out of sight, but still available when necessary? 
• Does it expose natural constraints? 
• Is it complete and concise, efficiently saying all that needs to be said? 

 
If we could design a representation performed well with respect to these ‘acquirability’ criteria 
above that was also endowed with with Turing-equivalent ‘computational expressiveness’, we 
would have achieved our ideal. Unfortunately, there appears to be an inevitable tradeoff between 
the acquirability and computational expressiveness of knowledge representations (Gruber, 1989; 
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Webster, 1988). Furthermore, the relative effectiveness of a mediating representation depends on 
both features of the problem and the roles and experience of participants. We discuss these issues 
below. 

5.1. The Tradeoff Between Acquirability and Computational Expressiveness 
 
Figure 8 depicts the tradeoff between acquirability and computational expressiveness. On one 
hand, programming languages are the epitome of computational expressiveness, but are not 
usable by those lacking special training. On the other hand, form-filling interfaces that may 
resemble the way a user normally enters information on paper are easy to learn , but they tend to 
be rigid, and thus limited in their range of applicability to specific problems that the system 
designers have foreseen. 
 

 
 

Figure 8. The tradeoff between acquirability and computational expressiveness (figure adapted 
from Gruber, 1989; Webster, 1988). 

 
Knowledge acquisition tools do not eliminate the competition between acquirability and 
expressive power, but they can act as a kind of magnet to help pull the curve out (Figure 9). 
Applying such automated techniques can make acquirable representations more powerful and 
powerful representations more easy to learn and use. 
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Figure 9. Knowledge acquisition tools can make acquirable representations more powerful and 
powerful representations more easy to learn and use (Figure adapted from Gruber, 1989). 

 
The dotted arrows in Figure 10 illustrate the knowledge acquisition tool designer's dilemma of 
trying to create an ‘ideal’ representation that combines the naturalness of form-filling interfaces 
with the power and flexibility of a Turing machine. Research has generally attempted either to 
improve the computational expressiveness of human-efficient representations (horizontal vector; 
e.g., repertory grids and concept maps) or to improve the learnability of computationally 
powerful ones (vertical vector; e.g., McDermott, Dallemagne, Klinker, Marques & Tung, 1990). 
These two stereotypical flavors of knowledge acquisition research programmes are shown as 
horizontal and vertical vectors.It seems that the more computationally powerful the 
representation, the more difficult it is to maintain a high level of acquirability. This dilemma is 
identical to the one faced by software engineering researchers in their attempts to achieve the 
goal of automatic programming (Rich & Waters, 1987). 
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Figure 10. The knowledge acquisition tool designer’s dilemma. 

 
While not solving the dilemma, the use of a three-schemata architecture for knowledge 
representation can sometimes reduce the need for an “ideal” representation by providing formal 
and informal mappings between different problem representations. 
 

 
 

Figure 11. A three-schemata architecture for knowledge representation reduces the need for an 
“ideal” representation. 

5.2. Relative Effectiveness of Mediating Representations for Different Kinds of 
Problems 
 
We expect that graphical, diagrammatic representations will prove superior to prose for tasks 
involving complex spatial or conceptual relationships (Larkin & Simon, 1987). As Checkland 
(1979) has noted: 
 

“a diagram is an improvement on linear prose as a means of describing connections and 
relationships. Looking at a map, for example, we can take it as a whole. Our minds can 
process different parts of it simultaneously, in parallel, whereas prose has to be processed 
serially, putting a much greater burden on memory if our concern is with relationships. In 
addition, and presumably because of this possibility of ‘parallel processing,’ diagrams are 
automatically summaries. Imagine the amount of prose needed to convey all the 
information contained in a 1:50,000 Ordnance Map.” 

 
Various kinds of graphical representations will differ in their effectiveness for a given situation. 
For example, we find both repertory grid and directed graph representations to be useful as visual 
problem clarifiers. The grid presentation allows the person to see patterns of similarity and 
difference that would otherwise be difficult to grasp. However, dependencies, abstraction or 
subsumption relationships cannot readily be shown within a grid, and are most naturally 
displayed in directed graphs (Pearl & Verma, 1987; Pearl, Geiger, & Verma, 1988). Our 
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experience in using both grids and directed graphs as mediating representations for knowledge 
convince us that each has advantages, depending on the context. As Jones (1981) states: 
 

“Matrices and nets are complementary ways of expressing a single set of relationships. 
The matrix enables a pattern that is too complex for the brain to generate all at once to be 
built up piece-by-piece outside the brain. A net of the same connections permits the 
assimilation of this pattern, once it has been completed and checked, back into the brain 
from whence came its constituent parts. Thus the brain can use an external aid to discover 
patterns among pieces of information that were originally understood only in isolation.” 

5.3. Relative Effectiveness of Mediating Representations for Different Kinds of 
Participants 
 
Beyond these general considerations, there is the fact that a mediating representation that is 
expressive and understandable for one set of participants may not be useful for another, either 
because the content is foreign to their concerns or the form in which the information is presented 
is unfamiliar. Zachman’s work (1987), for example, has emphasized the importance of selecting 
or creating the appropriate representations to support different kinds of participants in 
information system development. He uses the definition of classical architecture deliverables and 
adapts them for information system deliverables. These deliverables become the cognitive 
artifacts to support each kind of participant in information system development. Hence, in the 
process of constructing a building the deliverables are as follows: 
 

• first, the architect and the owner derive a mutual understanding of the basic concepts 
of the building through use of the bubble charts; 

• then the architect and owner agree on the form of the building as rendered in the 
architect’s drawing; 

• next, the architect’s detailed drawings establish a basis for negotiation with the 
general contractor; 

• following this, the contractor’s plans are formulated to describe the final building as 
seen by the builder; 

• finally, the shop plans provide a subcontractor’s specifications and instructions for 
construction of a part or section of the building. 

 
Similar levels of deliverables characterize the idealized development of information systems 
(Rich and Waters, 1987): 
 

• At the top of the hierarchy are corporate executives who formulate vision, mission, 
goals, objectives, plans, and product deliverables for the company in relatively brief 
statements of policy. 

• These statements of policy are used by strategic planners and experts on specific 
aspects of the business to arrive at detailed enterprise-wide descriptions of business 
entities and processes as they are and as they should be. These descriptions are 
couched in the vocabulary of the business and may serve to generate requirements not 
only for information systems, but also for other changes such as organizational 
restructuring. 
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• Systems analysts and designers develop information system models as the basis for 
design of the architecture of the program, translating high-level requirements into a 
detailed specification. A key feature of this specification is that it is couched in the 
vocabulary of programming rather than business. 

• Finally, the programmer creates code in a programming language based on the 
detailed specification. 

 
The important principle to draw from this illustration is that each “representation” of the building 
or information system has its own sphere of usefulness as an explicit basis of communication and 
agreement between adjacent participants in the process, and no single representation serves the 
needs of all. The goal is to support the most natural kind of formalization possible for a given set 
of participants, making the representation an effective vehicle for debugging the model. 
 
 

6. Conclusion 
 
We conclude with the words of David Parnas on traditional software specification, which apply 
equally well to knowledge acquisition: 
 

“The word ‘formal’ has been commandeered by a bunch of people who feel that it isn’t 
formal if human beings can read it… I have fallen into the same trap. I could write 
something and I could read it but my students couldn’t. And they could write something 
and they could read it but I couldn’t. And, not only that, but neither of us wanted to read 
it. … Therefore I have worked on new ways to write specifications so that people could 
read it… You can’t imagine how overjoyed I was when a pilot told me we had made a 
mistake with the A7 [avionics software specified in an earlier project] — not because we 
made a mistake but because the pilot could tell us.” (Parnas, 1991; see also Brooks, 1987; 
Kapor, 1991). 

 
It is our hope that a continued discussion and work on the design and use of mediating 
representations will increase our ability to design effective mechanisms for communication and 
shared understanding between participants in knowledge-based system development. 
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Note that the same information can be represented in more than one way. For example 
decomposition: tree (depth), outline (breadth), dependent list (fixed number, each level different 
meaning). 
 
Multiple types of information in same form: Graph view: ID, E-R, process views 
 
Transformation: Process view -> activity graph view -> agenda. Grids to influence diagrams 
 
Composition: Embedding grids within possibility tables 
 
Organization views vs. sketchpad views, vs.model views: Project notebook 
 


