
Toward a Flexible Ontology-Based Policy Approach
for Network Operations Using the KAoS Framework

Andrzej Uszok, Jeffrey M. Bradshaw, James Lott, Matthew
Johnson, Maggie Breedy, Michael Vignati

Florida Institute for Human and Machine Cognition (IHMC)
40 South Alcaniz St., Pensacola, FL 32502

{auszok, jbradshaw, jlott, mjohnson, mbreedy,
mvignati}@ihmc.us

Keith Whittaker, Kim Jakubowski, Jeffrey Bowcock
RDECOM CERDEC STCD

Ft. Monmouth, NJ 07703
{keith.d.whittaker.civ, kimberly.a.jakubowski2.civ,

jeffrey.c.bowcock.civ@mail.mil}

Abstract - This paper addresses the challenges of flexible and
uniform policy management in complex military network
operations. The ontology-based approach of KAoS policy services
provides flexibility in level of abstraction, in mapping to third-
party policy approaches, and in managing policies across multiple
application domains and across different operating environments.
KAoS allows for specification of policy in contrained English with
an ontology-based vocabulary. Following an overview of the major
components of the KAoS Policy Services framework, we describe
ontology-related components, including the UCore and KAoS
ontologies. We then describe our work on network and cognitive
radio management. We present our approach to mapping SNMP
MIB information to ontologies. Finally, we discuss results of an
ongoing performance study of the policy system.
Keywords: policy, ontology, OWL, KAoS, SNMP, network
operation management

I. INTRODUCTION
The growing dependence of the military on network-centric
warfare increases the need for an innovative approach to the
problems of integrated management for network operations.
Policy services have become the most widely-used approach
to such management problems. Many different kinds of
policy approaches have been proposed (e.g.,
[1][4][9][10][13]). An ideal fit for military requirements
would be a flexible and uniform policy approach that
supports multiple application domains and platforms in
complex, large-scale, and dynamic network operations. The
approach would need to support enterprise-wide control of
low-level network, security, access control, and radio
configurations based on high-level mission objectives. We
believe that ontology-based policy management schemes
hold great promise in providing the flexibility needed to
meet these and other demanding military requirements.
The KAoS Policy Services framework [12] described in this
article was the first to offer an ontology-based [2] approach
and is currently the most successful and mature of such
efforts. In a recent policy language overview presented to
the US Government Digital Policy Management Standards
Subgroup, KAoS was highlighted as the “recommended
policy ontology starting point” [15].

The flexibility of the KAoS ontology-based policy approach
is apparent in the following ways:
1. Flexibility in level of abstraction. The rich semantics of

ontology-based policies coupled with powerful
descriptive-logic-based reasoning mechanisms enable
KAoS to generate low-level operational policies from
high-level mission objectives (expressing
“commander’s intent”).

2. Flexibility in mapping to third-party policy approaches.
Special-purpose policy languages are inherently
limited, making it difficult or impossible to meet
requirements for system-wide control. A major
advantage of using ontology-based policy
representations is that any policy element (e.g., system
components, actions, and context) can be described by
appropriate concepts and relationships at the desired
level of abstraction. Because the semantics of such
representations typically are a superset of the semantics
of specialized “niche” policy languages, it is possible to
convert ontology-based representations into the more
specific languages.

3. Flexibility in managing policies across multiple
application domains. For a policy-based system to be
effective in multiple application domains, it must
develop beyond a specialized focus to handle richer
policy semantics—ideally, an easily extensible
semantics like OWL 21. For example, administration of
access control requires the specification of who can or
cannot use specific resources, while network
management applications control and schedule
bandwidth on a controlled network. In contrast to
approaches that focus on a particular application niche,
the ontology-based approach of KAoS allows it to be
easily extended to manage policies across multiple
application domains through adding new concepts and
relationships to the ontology.

4. Flexibility in managing policies across different
operating environments. Available enforcement
strategies and mechanisms vary across platforms and

1Ontology Web Language - http://www.w3.org/TR/owl-features

application domains, and the policy framework must be
flexible enough to adapt to each of them. The policy
system must also deal with the particular idiosyncrasies
of the environment in which the application will be
deployed. For example, some operating environments
afford virtually guaranteed connectivity with ample
network bandwidth, while other environments suffer
from intermittent connectivity and highly-constrained
bandwidth — or no network connection at all. The
architecture of KAoS, combined with its ontology-
based approach, allows it to be dynamically adapted to
a wide variety of platforms and operating environments.

In the next section, we describe KAoS in more detail.

II. KAOS POLICY SERVICES
IHMC’s KAoS policy services framework is a mature
system that relies on ontologies in the specification,
analysis, and enforcement of policy constraints across a
wide variety of distributed computing platforms. KAoS
enables the specification, management, conflict resolution,
and enforcement of policies. The use of ontologies to
represent policies enables reasoning about the controlled
environment, policy relations and disclosure, policy
conflict resolution, and domain structures and resources.
KAoS reasoning methods exploit description-logic-based
subsumption and instance classification algorithms and, if
necessary, controlled extensions to description logic (e.g.,
role-value maps).

Figure 1: KAoS Policy Services Conceptual Architecture.

Two important requirements for the KAoS architecture are
modularity and extensibility. These requirements are
supported through a framework with well-defined
interfaces that can be extended, if necessary, with the
components required to support application-specific
policies. The basic elements of the KAoS architecture are
shown in Figure 1. The three layers of functionality
correspond to three different policy representations:

• Human Interface Layer: This layer uses a hypertext-
like graphical interface (KAoS Policy Administration
Tool — KPAT) for policy specification in the form of
constrained English sentences. The vocabulary is
automatically provided from the relevant ontologies,
consisting of highly-reusable core concepts augmented
by application-specific ones. Besides KPAT’s use in
policy specification and analysis, it is employed for
administrative tasks such as browsing and loading
ontologies, and domain and Guard management. The
generic KPAT interface can be easily customized or
replaced.

• Policy Management Layer: Within this layer, OWL is
used to encode and manage policy-related information.
The KAoS Distributed Directory Service (DDS)
residing in this layer encapsulates a set of ontology
reasoning mechanisms over the policies, used for
policy deconfliction and various kinds of analysis.

• Policy Monitoring and Enforcement Layer: KAoS
automatically “compiles” OWL policies to a very
efficient format that can be used for monitoring and
enforcement. This representation provides the
grounding for abstract ontology terms, connecting
them to the instances in the runtime environment and
to other policy-related information. The KAoS Guard
residing in this layer is integrated with the controlled
application and provides an API for policy checking.

Maintaining consistency among the three layers is handled
automatically by KAoS, a task made more challenging
because each layer implements its functionality in a
distributed rather than a centralized manner.
Within each of the layers, the end user may plug-in
specialized extension components if needed, as described
in more detail throughout the paper. Such components are
typically developed as Java classes and described using
ontology concepts in the configuration file. They can then
be used by KAoS in policy specification, reasoning and
enforcement processes.
KPAT’s generic Policy Editor presents an administrator
with a starting point for policy construction — essentially,
a very generic policy statement shown as hypertext.
Clicking on a specific link in this statement that represents
a variable provides users with menu choices allowing them
to make the generic policy more specific.
Policies defined using this menu-driven process follow a
predetermined syntax in constrained natural language for
either authorization or obligation policies. Authorization
policies permit or forbid some action while obligation
policies either require some action to be performed or
waive such a requirement. Figure 2 shows an example of an
authorization policy being defined in KPAT.
During use, KPAT accesses the ontologies that have been
loaded into the DDS and provides the user with the list of
choices narrowed to the current context of the policy
construction. New ontology classes and instances needed
for specific kinds of policies can also be created within
KPAT. Since the ontologies directly determine what

choices are provided to users when they build policies,, the
correctness of the semantics of the policy is dependent only
on the correctness of the ontology. KAoS tools to create
ontologies directly from the environment (currently SNMP
and WSDL; soon, Java) are designed to further ensure the
correctness of the ontology. The translation from the form
of the constrained English policy to its OWL representation
in KPAT is deterministic.

Figure 2: Authorization Policy in the KPAT Generic Policy Editor.

To further simplify policy construction, KPAT provides
two additional policy creation interfaces:
• The Policy Wizard **(Error! Reference source not

found.) takes a user step-by-step through the policy
creation process. Information selected for presentation
is conditioned on whatever has been selected
previously, making the experience as simple and
foolproof as possible.

• The Policy Template Editor allows custom policy
editors for a given kind of policies to be created by
point-and-click methods. For instance, if an application
will require the definition of several policies governing
publish/subscribe actions, a custom policy editor can
be quickly created by limiting choices to just what is
needed, thus eliminating the requirement for repetitive
selections when a given type of policy has to be
created multiple times.

As another example of KPAT extensibility, when filling in
values of type “area,” users are presented with a custom
area editor. The editor allows them to define a polygonal
region on top of a domain-specific background map by
using the mouse to define edge points.
The Guard is where KAoS meets the controlled system. Its
primary role is as a policy decision point. Guards register to
receive policies about particular entities or classes of entities
for a given set of action classes. Because guards can save

their policies and reload them directly from a snapshot, they
can be bootstrapped in a standalone mode without a need to
connect to the DDS. This functionality allows policies to
govern the actions of standalone sensors or similar
components.
Guards not only receive information about policies, but also
about the state of the system and the entities being managed.
Guards do not by themselves provide monitoring functions,
but they do provide interfaces to plug in outside monitors or
databases providing access to external state or event-related
information.
The KAoS Guard Policy Checking Interface provides a set
of methods that allow checking for:
• Authorization. If an action is not authorized, an

exception is thrown with information about the policy
that prevented it. In some secure applications, however,
it would not be desirable to release information about
the cause of the policy exception.

• Obligations. A list of obligations for a given actor is
returned, sorted in rank order of importance. In
addition, if there are obligations for other actors that are
triggered by an external event, then KAoS will try to
locate them and forward the obligations to them.

• Configuration options. If a partial description of the
action is sent to KAoS, a range of allowed values for
properties of a given action is returned. For instance, if
an application were to query the guard about a planned
radio transmission, information about the maximum
power and range of frequencies allowed to be used in
the given geographical area would be returned to it.
Disclosure policies would be used to filter out
unauthorized information in the results.

In order to support the semantics of complex application-
specific policies, guards accommodate a variety of
extensions. These can be activated on demand, as specified
in each guard’s configuration information. Specific
extensions are:
• History Monitor: tracks the history of specific actions

and allows verifying whether a given history is present
(e.g., three successive login failures).

• State Manager: manages set of environment-specific
sensors that provide information about dynamic aspects
of the environment or situation (e.g., threat level,
resource availability).

III. ONTOLOGY
An ontology [2] is a formal representation of knowledge as
a set of concepts within a domain, and the relationships
between those concepts. Ontologies structure these concepts
at various levels of abstraction, where the upper ontology
consists of relatively generic terms and lower-level
ontologies extend the basic concepts with more specific
definitions relevant to the particular domain of application.
For analytical purposes, relationships among lower-level
concepts can be maintained through the upper-level parent
concepts. KAoS ontologies are used as a source of
vocabulary for policies and to reason about the relationships

among policies. They are used to find the mapping between
abstract concepts used in policy definition and the actual
concrete entities controlled by the given policy.

A. Upper Ontology – KAoS and UCore

The KAoS Core 2 ontology is defined in OWL 2 and
contains about a hundred class definitions providing basic
concepts of entity, actor, action, group, situation, history,
state, and policy. These basic concepts are extended with
essential subclasses and properties. The development of
KAoS Core ontology began in 2001. Recently the US
Military has developed its own upper layer ontology called
UCore Semantic Layer3 ontology which defines 144 classes
and 16 relations. Its terms are very generic and pertain
mainly to the physical aspect of environment such as
vehicles, cargo, economic events, and so forth. We linked
our ontologies with UCore Semantic Layer to help provide
interoperability with military systems that rely on it.

B. Network Ontology

The role of the Computer Network ontology is to serve as a
mediating virtualization layer between the network manager
(whether a human or automated system) and the
complexities of heterogeneous network infrastructure. The
network ontology represents both active nodes (models as
subclasses of Actor) and passive links (models as subclasses
of Entity). The links are associated with a class that
represents the changing state of connections. Network nodes
are associated with physical locations, organizations, and
other context. Nodes are related with actions they can
perform:
• network modification (add, move, reconfigure,

remove),
• changes in connections
• information generation, translation, and dissemination.
The ontology models a variety of basic categories of
network devices and servers, their interfaces and ports, links
types (including radio links) and communication protocols.
The Network ontology concepts have been connected to
UCoreSL at the level of its classes slr:Entity and slr:Event.
Additionally, specific UCoreSL terms are used to define the
state of the physical environment in which the network
operates. UCoreSL properties are used as superproperty of
specific network properties such as slr:located_at or
slr:part_of.

C. Radio Ontology

The Radio Network OWL concept is a specialization of the
Computer Network concept, and thus the Radio ontology
relies on the Network ontology. In the ontology, a Radio is a
subclass of KAoS Actor class, under the assumption that it
will be performing actions such as transmission. It is defined
as consisting of a transmitter, receiver and channels and tied
into generic equipment class. The appropriate radio

2 http://ontology.ihmc.us/ontology.html
3 https://wiki.kc.us.army.mil/wiki/UCore-SL_Implementation_Guidance

frequency parameters are defined to each class. The Radio
class has properties depicting its physical location,
condition, mission, ownership, and so forth. It also has
properties relating it to radio links and relevant states. The
Radio class is associated with actions related to, among
others, selection and modification of channels and power.
This ontology also has definitions of action classes related
to network modification (add, move, reconfigure, remove
radio and links), beacon, and broadcasting of other
messages. Additional ontologies define classes of units for
radio frequencies and parameters, and enumerations of
commonly-used band designations. A separate ontology
defines terms contained in the US Spectrum Allocation
chart4 and those related to waveform classification. Since
radios are typically tactical equipment, we have also defined
a Tactical System Ontology based on a MITRE study, and
have used it to provide classification of radios from the
perspective of the tactical environment.

D. Ontology Mapping Tool

The Computer Network ontology has existed for quite a
while, and already contains a rich set of knowledge about
specific network devices. These include SNMP MIB files as
well as other formats. In addition, these technologies allow
for operational network management. In order to link the
high-level network ontology described in the previous
section with actual network devices we created a tool
(Figure 3) that enables semi-automatic mapping from
specific representation of network configurations to OWL.
The tool facilitates the migration of knowledge about
network configuration and functionality from a MIB
database into ontologies. The mapping from the ontologies
to the MIB files and other representations—used when
policies employing a given vocabulary are enforced—is also
supported in a fashion that is transparent to the end user.
The tool possesses an easy-to-learn interface showing
results of the automatically-generated mapping to OWL, but
allowing for user modification. An important option is the
ability to link a newly-mapped concept to an existing
concept in the ontology. We are working on assisting the
user with this process by providing suggestions as a list of
possible candidate concepts for linkage using heuristic
search methods and sources such as WordNet5.
SNMP MIB files are parsed using the Mibble 6 parser,
allowing the tool to retrieve imported modules, textual
conventions, object names, and sequences. The tool
generates an ontology name based on the MIB name for
each element found, and then relates them to appropriate
ontology concepts from the Network ontology. The same
mapping methods are employed for other representations
such as Web Service WSDL.7 Our goal is to make this tool
generic, allowing mapping from different representations of

4 http://www.ntia.doc.gov/osmhome/allochrt.pdf
5 http://wordnet.princeton.edu/
6 http://www.mibble.org
7 http://www.w3.org/TR/wsdl

real-world knowledge to ontologies and integrating them
into a uniform semantic layer. This tool would typically be
used by a person responsible for deploying KAoS in a given
environment. The creator of polices will not be exposed to
its inherent complexity.

Figure 3: Fragment of the SNMP to Ontology mapping tool GUI.

IV. Network Management
For network management applications, we define policies
that automate network configuration and reconfiguration
based on changes in network state or in the operational
situation. Using KAoS, it is possible to combine policies
from different sources of regulation with default
configuration and tactical intent for network operation into
the coherent set of policies. The policy generic terms are
then mapped (Figure 4) to the actual controlled network
elements through ontology reasoning and the exploitation of
the previous MIB (and other representations) to OWL
mapping.

Figure 4: Example of the network policy controlling selection of the used
link by the network gateway.

Ontological concepts representing specific MIB elements
are annotated with OID numbers. This allows the KAoS
Guard extension SNMPSensor and SNMPEnforcer to map

ontology concepts from the policies to SNMP requests - and
vice-versa (Figure 5).
The role of the sensor is to monitor the state of one or more
SNMP-enabled nodes, based on policy interest. It maps
ontology-based state definitions from policies to SNMP
requests. Either it periodically sends SNMP GET requests to
obtain the current value of parameters of interest to policies
or it sets up TRAP, if available. It converts SNMP replies to
their ontological equivalent and notifies the KAoS Guard's
StateManager of changes to the network node's state.
The enforcer configures network nodes in accordance with
policy decisions, whether as part of initial configuration or
in response to state or situation changes. It sends an SNMP
SET request containing information about the new
configuration. Implementation of these components may
also rely on the SNMP4J library.

Figure 5: KAoS SNMP integration.

As a next step, we have begun to integrate KAoS with the
JINX network management system. This effort will
facilitate management of networks composed of joint assets
during a joint mission. We are extending our ontology
mapping tool to take advantage of our current SNMP and
MIB integration. The mapping tool is also being extended to
cover additional network information standards (e.g.,
SCOM8). We plan to use KAoS to generate specific network
configurations based on high-level requirements (intent) for
network operations. These high-level requirements are
expressed as policies. The configuration is provided to JINX
through its MUSIC (Multi-System Integrated Configurator)
interface. The KAoS Guard State Monitor is being
integrated with JINX in order to obtain feedback about
network state changes and, as policy dictates, to update the
original network configuration accordingly.

V. COGNITIVE RADIO POLICY MANAGEMENT
Radio configuration and operation can also be controlled by
policy services. When a radio is bootstrapped, its software
provides KAoS with information such as its location,
mission, or usage. Based on this information, the policy
services calculate the configuration of viable operational
parameters for this radio. The feedback about any changes

8 http://technet.microsoft.com/en-us/systemcenter/om/bb497976

to the radio context is provided to the KAoS Guard State
monitor by the radio software. Based on these changes, the
configuration will be recalculated and reconfigured as
needed.
Radio software also consults policies about any obligations
that may be triggered when it receives radio network
management signals or when changes in the radio state or
network are detected. KAoS generates the required response
of the radio software, determining how the generic policy
form should be shaped to the local radio context.
We are creating templates for common policy types in this
domain—for instance, geospatial, time-based, identity-
based, frequency-based, technical parameter enforcement,
directive control, group behavior, monitoring behaviors, and
network specification.

VI. MAPPING OF HIGH –LEVEL TO LOW-LEVEL POLICIES
KAoS policy refinement mechanisms map from high-level
policies (e.g., expressions of Commander’s intent, mission-
level objectives) to low-level policies that dictate
operational aspects of network configuration and operation.
As our research progresses, we will upgrade our initial static
mapping approaches with more advanced synthetic methods
supported by a planner.
Intent-level objectives for network operations may be
expressed relative to a given mission type or a specific
mission instance. Specific needs for connections between
units based on current conditions can also be expressed. By
providing priorities for network resources based on the
situation of units (e.g., engagement status, whether they
have reached target location), resilient response to meet
specific high-level objectives can be accommodated (e.g.,
needs chat connections to all units, needs video connection
to unit Bravo).

Figure 6: Creating a hypertext template (links are purple)

KPAT allows administrators to create policy templates
composed of free-form English sentences tailored to the

vocabulary and types of policies that are common in a
particular application context (Figure 6). Very simple
templates may be configured to generate a set of arbitrarily
complex policies as output. In this way, even novices can
create sensible, well-crafted policies without requiring
specialized training. Templates can be used equally-well to
define policies expressing high-level intent and low-level
tactics. To create a hypertext template for a new class of
policies, an administrator begins by writing a plain-English
statement of the policies which the template will output,
just as if he were using a normal text editor or word
processor. For example, “Routers are allowed to forward
data using an up-link”. The underlined words become
variables that the end-user fills in.
Next, one or more policies are added to the template, which
will be the output. Static values within these policies are
filled in, while values to be chosen by the end-user of the
template are left empty. For example, in the policy below,
the values for the attributes packet and usingLink are left
empty:

Any Router is authorized to perform
ForwardDataAction which has attributes:

the packet value is of type [Select...]
the usingLink value is of type [Select...]

To complete the template, words or phrases from the plain-
English statement must be linked to the empty values in the
policies. To create a link, an administrator highlights and
underlines some text from the statement for which the end-
user must choose a value. Then he simply drags and drops
the underlined text to an empty value in one of the policies,
thereby completing the link. A single underlined phrase in
the statement may be linked to multiple values in the
resultant policies (assuming the range of values has a non-
empty intersection).
Later, when the template is used to specify a new policy,
end-users are presented with a plain-English policy
statement, including the underlined phrases as hypertext
(Figure 7). The user simply clicks on the underlined
phrases to select the values. These values will be
incorporated into the final OWL representation of the
policy that is generated by the template.

Figure 7: Filling in a completed hypertext template

VII. SCALABILITY AND PERFORMANCE
The policy system should be efficient in order to be
deployable in realistic network management applications.
Performance studies provide insight into system overhead as
a baseline against which future improvements can be
compared. Among others, we measured two critical phases
in policy lifecycle. The first phase is when policies are

initially committed by the user to the KAoS Directory
Service and distributed to Guards (Figure 8). The second is
when the policies are used in the Guard to calculate
decisions (Figure 9).
When policies are committed to the KAoS DDS using
KPAT, they must be translated to an ontological
representation, added to the ontology, and then distributed to
relevant Guards. Figure 8 shows the average time needed for
each policy: about 120ms when more than 50 policies are
added are the same time. When a smaller number of policies
is committed, the time is about 200ms for each policy. In the
case of larger number of policies the overhead of network
communication is spread across a larger number of policies.

Figure 8: Diagram presenting the time needed to commit increasing number

of policies

In contrast to the policy commitment, the time to obtain
authorization policy decisions is fast (40ms) even when
there are a large number of active policies. Such efficiency
is achieved by the effective use of indexes and hash tables.

Figure 9: Diagram presenting the time needed to obtain decision base

depending on the number of policies

Obligation policy decision time is linearly proportional to
the number of obligation policies. The reason for the
difference between authorizations and obligations is because
in the case of authorizations the system has to find only the
single deciding policy but in the case of obligations it has to
analyze all obligation policies matching the relevant action.

These performance studies will provide the basis for future
improvements in KAoS.

VIII. CONLUSION
We believe that the KAoS ontology-based policy
management approach—with its rich semantics, its
affordances for layered abstractions, and its ability to
accommodate dynamic system evolution—holds great
promise for the challenges of military network operations.

ACKNOWLEDGMENTS
This research effort is supported by the US Army

CERDEC Grant W15P7T-06-D-E402. Sub: S11-114109.

REFERENCES
[1] Agrawal, D., Calo, S, Lee, K, Lobo, J and Verma D. (2009). Policy

Technology for Self-Managing Systems. IBM Press, ISBN-978-0-13-
221307-3.

[2] Allemang, D. and Hendler, J. (2008). Semantic Web for the Working
Ontologist. Morgan Kaufmann, ISBN-978-0-12-373556.

[3] CERDEC Dynamic Spectrum Access Policy Assessment report.
[4] Chadha, R. and Kant, L. (2008). Policy-Driven Mobile Ad Hoc

Network Management. Willey Interscience, ISBN-978-0-470-05537-
3.

[5] Dandashi, F., et al (2008). Tactical Edge Characterization Framework
-Volume 1: Common Vocabulary for Tactical Environments. MITRE
Corporation,
http://www.mitre.org/work/tech_papers/tech_papers_08/08_0037/.

[6] Elmasry, G., Jain, M., Jakubowski, K. and Whittaker, K. (2010).
Conflict Resolution for Shared Resources between Network
Mansagers. Proceedings of MILCOM 2010: 1866-1871.

[7] Guerrero, A., Villagrá, V., de Vergara, J. and Berrocal, J. (2005).
Ontology-Based Integration of Management Behaviour and
Information Definitions Using SWRL and OWL. Proceedings of
DSOM 2005: 12-23.

[8] Kodeswaran, P., Li, W., Joshi, A., Finin, T. and Perich, F. (2010).
Enforcing Secure and Robust Routing with Declarative Policies.
Proceedings of MILCOM 2010: 1653-1658.

[9] http://www.ponder2.net/ (accessed 25 May 2011).
[10] Strassner, J. (2004). Policy-Based Network Managmement. Morgan

Kaufmann, ISBN-1-55-860-859-1.
[11] Uszok, A., Bradshaw, J., Lott, J. Breedy, M., Bunch, L., Feltovich, P.,

Johnson, M. and Jung, H., (2008). New Developments in Ontology-
Based Policy Management: Increasing the Practicality and
Comprehensiveness of KAoS. In Proceedings of the IEEE Workshop
on Policy 2008, IEEE Press.

[12] Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate A., Dalton, J.,
Aitken, S. (2004). KAoS Policy Management for Semantic Web
Services. IEEE Intelligent Systems, July/August, 19(4), pp. 32-41.

[13] Verma, D. (2001). Policy-Based Networking. New Riders, ISBN-1-
57870-226-7.

[14] Walsh, L. (2008). SNMP MIB Handbook. Wyndham Press, ISBN
978-0-9814922-0-9.

[15] Westerinen, A., Digital Policy Management: Policy Language
Overview. Presentation at the DPM Meeting, Jan 19, 2011 / Updated
Mar 27, 2011.

