
Applying KAoS Services to Ensure Policy
Compliance for Semantic Web Services Workflow

Composition and Enactment

Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers
Institute for Human and Machine Cognition (IHMC), 40 S. Alcaniz, Pensacola, FL 32501, USA

{auszok, jbradshaw, rjeffers}@ihmc.us

Austin Tate, Jeff Dalton
Artificial Intelligence Applications Institute, University of Edinburgh, Edinburgh EH8 9LE, UK

{a.tate, j.dalton}@ed.ac.uk

Abstract
In this paper we describe our experience in applying KAoS services to ensure policy
compliance for Semantic Web Services workflow composition and enactment. We are
developing these capabilities within the context of two applications: Coalition Search and
Rescue (CoSAR-TS) and Semantic Firewall (SFW). We describe how this work has
uncovered requirements for increasing the expressivity of policy beyond what can be done
with description logic (e.g., role-value-maps), and how we are extending our
representation and reasoning mechanisms in a carefully controlled manner to that end.
Since KAoS employs OWL for policy representation, it fits naturally with the use of
OWL-S workflow descriptions generated by the AIAI I-X planning system in the CoSAR-
TS application. The advanced reasoning mechanisms of KAoS are based on the JTP
inference engine and enable the analysis of classes and instances of processes from a
policy perspective. As the result of analysis, KAoS concludes whether a particular
workflow step is allowed by policy and whether the performance of this step would incur
additional policy-generated obligations. Issues in the representation of processes within
OWL-S are described. Besides what is done during workflow composition, aspects of
policy compliance can be checked at runtime when a workflow is enacted. We illustrate
these capabilities through an example where policies control runtime queries and return
results from the CMU Semantic Matchmaker. Finally, we outline plans for future work.

1. Introduction

Despite rapid advances in Web Services, the demanding requirements of the user
community continue to outstrip currently available technology solutions. To help
close this gap, advocates of Semantic Web Services have begun to define and
implement many new and significant capabilities (http://www.swsi.org/). These new
capabilities are intended to more fully harness the power of Web Services through
explicit representations of the semantics underlying Web resources and the
development of intelligent Web infrastructure capable of fully exploiting them.

2

Semantic Web Languages such as OWL extend RDF to allow users to specify
ontologies composed of taxonomies of classes and inference rules.

Semantic Web Services can be effectively used not only by people but also by
software agents [10]. Agents will increasingly use the combination of semantic
markup languages and Semantic Web Services to understand and autonomously
manipulate Web content in significant ways. Agents will discover, communicate, and
cooperate with other agents and services and, as described in this paper, will rely on
policy-based management and control mechanisms to ensure that human-imposed
constraints on agent interaction are respected. Policy-based controls of Semantic Web
Services can also be used to govern interaction with traditional (non-agent) clients.

2. Policies and Semantic Web Services

Policies, which constrain the behavior of system components, are becoming an
increasingly popular approach to dynamic adjustability of applications in academia
and industry (http://www.policy-workshop.org/). Elsewhere we have pointed out the
many benefits of policy-based approaches, including reusability, efficiency,
extensibility, context-sensitivity, verifiability, support for both simple and
sophisticated components, protection from poorly-designed, buggy, or malicious
components, and reasoning about their behavior [2]. Policies have important
analogues in animal societies and human cultures [6].

Policy-based network and distributed system management has been the subject of
extensive research over the last decade (http://www-
dse.doc.ic.ac.uk/Research/policies/) [18]. Policies are often applied to automate
network administration tasks, such as configuration, security, recovery, or quality of
service (QoS). In the network management field, policies are expressed as sets of
rules governing choices in the behavior of the network. There are also ongoing
standardization efforts toward common policy information models and frameworks.
The Internet Engineering Task Force, for instance, has been investigating policies as a
means for managing IP-multiservice networks by focusing on the specification of
protocols and object-oriented models for representing policies
(http://www.ietf.org/html.charters/policy-charter.html).

The scope of policy management is increasingly going beyond these traditional
applications in significant ways. New challenges for policy management include:

• Sources and methods protection, digital rights management, information
filtering and transformation, and capability-based access;

• Active networks, agile computing, pervasive and mobile systems;
• Organizational modeling, coalition formation, formalizing cross-organizational

agreements;
• Trust models, trust management, information pedigrees;
• Effective human-machine interaction: interruption and notification

management, presence management, adjustable autonomy, teamwork
facilitation, safety; and

• Support for humans trying to retrieve, understand, and analyze all policies
relevant to some situation.

3

Multiple approaches for policy specification have been proposed that range from
formal policy languages that can be processed and interpreted easily and directly by a
computer, to rule-based policy notation using an if-then-else format, to the
representation of policies as entries in a table consisting of multiple attributes.

In the Web Services world, standards for SOAP-based message security1 and XML-
based languages for access control (e.g., XACML2) have begun to appear. However
the immaturity of the current tools along with the limited scope and semantics of the
new languages make them less-than-ideal candidates for the sorts of sophisticated
Web-based applications its visionaries have imagined for the next decade [7; 12].

The use of XML as a standard for policy expression has both advantages and
disadvantages. The major advantage of using XML is its straightforward extensibility
(a feature shared with languages such as RDF and OWL, which are built using XML
as a foundation). The problem with mere XML is that its semantics are mostly
implicit. Meaning is conveyed based on a shared understanding derived from human
consensus. The disadvantage of implicit semantics is that they are rife with ambiguity,
promote fragmentation into incompatible representation variations, and require extra
manual work that could be eliminated by a richer representation. However Semantic
Web-based policy representations, such as those described in this paper, could be
mapped to lower level representations if required by an implementation by applying
contextual information.

Some initial efforts in the use of Semantic Web representations for basic security
applications (authentication, access control, data integrity, and encryption) of policy
have begun to bear fruit. For example, Denker et al. have integrated a set of
ontologies (credentials, security mechanisms) and security extensions for OWL-S
Service profiles with the CMU Semantic Matchmaker [12] to enable security
brokering between agents and services. Future work will allow security services to be
composed with other services. Kagal et al. [8] are developing Rei, a Semantic Web
language-based policy language that is being used as part of the described above
OWL-S Service profiles extension and other applications.

In another promising direction, Li, Grosof, and Feigenbaum [9] have developed a
logic-based approach to distributed authorization in large-scale, open, distributed
systems.

3. KAoS Policy and Domain Management Services

KAoS (Knowledgeable Agent-oriented System) is one of the first efforts to represent
policy using a Semantic Web language—in this case OWL3. KAoS services and tools
allow for the specification, management, conflict resolution, and enforcement of
policies within the specific contexts established by complex organizational structures
represented as domains [2; 3; 16; 17]. While initially oriented to the dynamic and
complex requirements of software agent applications, KAoS services have been
extended to work equally well with both agent and traditional clients on a variety of

1 e.g., http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
2 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
3 A comparison among two semantically-rich representations of policy (KAoS, Rei) and amore

traditional policy language (Ponder[5]) can be found in [15].

4

general distributed computing platforms (e.g., CORBA, Web Services, Grid
Computing (Globus GT3)).

3.1 Ontological Representation of KAoS Policies

KAoS uses ontology concepts (encoded in OWL) to build policies. During its
bootstrap, KAoS first loads a KAoS Policy Ontology (KPO) defining concepts used to
describe a generic actors’ environment and policies within this context
(http://ontology.ihmc.us/) and then, on top of it, an additional ontology is loaded,
extending concepts from the generic ontology, with notions specific to the particular
controlled environment.

The KAoS Policy Service distinguishes between authorizations (i.e., constraints
that permit or forbid some action) and obligations (i.e., constraints that require some
action to be performed when a state- or event-based trigger occurs, or else serve to
waive such a requirement) [4]. Other policy constructs (e.g., delegation, role-based
authorization) are built out of the basic primitives of domains plus these four policy
types.

The OWL definition of KAoS policy (Fig. 1 shows the tool to define such policies)
is an instance of one of four basic policy classes, that is: PositiveAuthorization,
NegativeAuthorization, PositiveObligation or NegativeObligation, with values of
properties determining management information for a particular policy (e.g. its
priority). The type of a policy instance determines the kind of constraint that should
be applied while the applicability of a policy is determined by its action class. The
action class uses OWL restrictions to narrow scopes of action properties to the needs

Fig. 1. Graphical interface of the OWL policy editor and administration tool: KPAT.

5

of a particular policy. Every action contains definition of the range of actors
performing it. This range can be defined using any available OWL construct: it can be
an enumeration of actor instances; it can be a class of actors defining its type or any
description of the actor context (for instance, class of actors executed on some host
and possessing a given resource). The same is true for other properties of the action
class. As a result, policy can contain arbitrarily complex definitions of a situation.
Thus KAoS policies represent policies without conditional rules - relying instead on
the context restrictions associated with the action class to determine policy
applicability in a given situation.

An action class is used to classify action instances of actions that actors intend to
take or are currently in the process of undertaking. RDF descriptions of action
instances are constructed by a party interested in checking policy impact on these
actions. KAoS performs classification of this instance, relying on the inference
capabilities of Stanford’s Java Theorem Prover (JTP;
http://www.ksl.stanford.edu/software/JTP/), and obtains a list of any policies whose
action classes are relevant to the current situation. In the next step, KAoS determines
priorities of the obtained policies and sorts the policies accordingly1. This allows
KAoS to find the dominating authorization policy. If the dominating authorization is
positive, KAoS then collects, in order of priority, obligations from any obligation
policies that have been triggered. The result is returned to the interested parties - in
most cases these parties are the enforcement mechanisms that are jointly responsible
for blocking forbidden actions and assuring the performance of obligations.

Representing policies in OWL facilitates reasoning about the controlled
environment, policy relations and disclosure, policy conflict detection, and
harmonization, as well as about domain structure and concepts exploiting the
description logic subsumption and instance classification algorithms. Conflicting
policies can be identified and, if desired, harmonized through KAoS algorithms
implemented within JTP.

3.2 Important KAoS Features

We highlight a few important features of KAoS below:
• Homogeneous policy representation. Because all aspects of KAoS policy

representation are encoded purely in OWL, any third-party tool or environment
supporting OWL can perform specialized analyses of the full knowledge base
completely independently of KAoS itself, thus easing integration with an
increasingly sophisticated range of new OWL tools and language
enhancements in the future.

• Maturity. Over the past few years, KAoS has been used in a wide range of
applications and operating environments.

• Comprehensiveness. Unlike many approaches that deal with only simple forms
of access control or authorization, KAoS supports both authorization and
obligation policies. In addition, a complete infrastructure for policy

1 More complex sorts, based on logical precedence conditions (e.g., negative authorization

could be made to take precedence over positive authorization, policies defined by one
authority over a lesser authority, more specific over more general, etc.) rather than numeric
priority, will be implemented in the future.

6

management has been implemented including a full range of capabilities from
sophisticated user interfaces for policy specification and analysis to a generic
policy disclosure mechanism. Facilities for policy enforcement automation
(i.e., automatic generation of code for enforcers) are under further
development.

• Pluggability. Platform-specific and application-specific ontology is easily
loaded on top of the core concepts. Moreover, the policy enforcement elements
have been straightforwardly adapted to a wide range of computing
environments, both traditional distributed computing platforms (e.g., Web
Services, Grid Computing, CORBA) and various software and robotic agent
platforms (e.g., Nomads, Brahms, SFX, CoABS Grid, Cougaar).

3.3 Beyond Description Logic for Policy Representation

Until recently, KAoS used OWL-DL (initially DAML) exclusively to describe policy-
governed entities and their actions. The semantic richness enabled by OWL in
comparison to traditional policy languages allowed us much greater expressivity in
specifying policies, however we found ourselves limited in situations where we
needed to define policies where one of the elements of an action’s context depended
on the value of another part of the context. One of the simplest examples is an action
of loop communication, where the source and the destination of communication must
be constrained such that they are one and the same. A more complex example would
be the situation where we want to constrain the action to return the results of a
calculation only to the parties that provided the data that were used to perform it (or to
the specific entities authorized by the providers of the data). Such an action
description might be needed in order to specify a policy controlling distribution of
calculation results. All such action descriptions go beyond what OWL-DL is capable
of expressing.

The required missing aspect of representational semantics has, however, been well
studied under the name of role-value-maps [1]. Role-value-maps are meant to express
equality or containment of values that has been reached through two chains of
instance properties. The emerging standard for OWL rules, SWRL1, allows the use of
role-value-map semantics. However, the required syntax is quite complex and we
have begun to think that an OWL-based representation expressing this same semantics
might be valuable for broad range of uses. For instance, the developers of OWL-S
[11] found the need to express similar dataflow semantics, and developed their own
formulation (process:sameValues) that allowed the representation of such chains,
albeit with the limitation that they could contain only single chain element.

KAoS is currently being equipped with mechanisms that will allow adding role-
value-map semantics to defined policy action using KPAT. For the interim, we are
basing our syntax for this semantics on the current version of the SWRL OWL
ontology2. However, the code that generates this syntax is encapsulated within a
specialized Java class allowing later modification if the SWRL ontology changes or if
an OWL-based syntax eventually emerges. Our classification algorithm is also able to
use this information in order to classify action instances. This algorithm first verifies

1 http://www.daml.org/2003/11/swrl/
2 http://www.daml.org/2003/11/swrl/swrl.owl

7

if the OWL-DL part of the action class is satisfied by an instance and, if so, proceeds
to check the appropriate role-value-map constraints. So, for instance, if KAoS needs
to determine whether an intercepted communication is a loop communication, it
would determine whether the source of the current communication is one of the values
of the property that describes the destination of the communication.

In order to perform more complex policy analyses relying on role-value-map
semantics, we have begun joint exploration with Stanford on how JTP might be
extended to allow subsumption reasoning on role-value-map semantics.

4. Example Application Contexts

In the remainder of the paper, we will discuss how KAoS is being extended to address
two complementary requirements in a Semantic Web Services context:

• Verification for policy compliance for Semantic Web Services workflow
composition (section 5),

• Enforcement of policies during the workflow enactment (section 6).
In this section, we briefly introduce the application contexts that motivate these

investigations.

4.1 Coalition Search and Rescue Scenario

Within the CoSAR-TS1 (Coalition Search and Rescue Task Support) project we are
testing the integration of KAoS and AIAI’s I-X technology with Semantic Web
Services. Search and rescue operations, especially coalition based, by nature require
the kind of rapid dynamic composition of available policy-constrained heterogeneous
resources that make it a good use case to describe them using Semantic Web
technologies. Additionally, military operations usually are conducted according to the
well defined procedure, which however have to be concretized and grounded to the
given situation. This presents a good planning under policy imposed constrained.
Other participants in this application include BBN Technologies, SPAWAR, AFRL,
and Carnegie Mellon University.

The fictitious scenario, which is an extension of the well-know collation agent
experiment CoAX2, begins with an event that reports a downed airman between the
coastlines of four fictional nations bordering the Red Sea: Agadez, Binni and Gao (to
the West), and Arabello (to the East). In this initial scenario it is assumed that
excellent location knowledge is available, and that there are no local threats to counter
or avoid in the rescue. The airman reports his own injuries via his suit sensors. Next is
an investigation of the facilities available to rescue the airman. There are different
possibilities: a US ship-borne helicopter; a Gaoan helicopter from a land base in
Binni; a patrol boat from off the Arabello coastline, etc. Finally, there is a process to
establish available medical facilities for the specialized injury reported using the
information provided about the countries in the region.

1 http://www.aiai.ed.ac.uk/project/cosar-ts/
2 http://www.aiai.ed.ac.uk/project/coax/

8

Process Panel
Domain Editor

Messenger I-Space

Map Tool

Selection of these resources is constrained by different policies originated from
different partners of the coalition. If for instance a hospital in Arabello is best placed
to provide the facilities, due to the fact that it has the necessary treatment facilities,
choices of rescues resources are then restricted. There is a coalition policy that no
Gaoan helicopters may be used by coalition members to transport injured airmen.

In addition to IHMC’s KAoS, the CoSAR-TS application relies on a variety of I-X
technologies from AIAI. I-X Process Panels (http://i-x.info; [13; 14]) provide task
support by reasoning about and exchanging with other agents and services any
combination of Issues, Activities, Constraints and Annotations (elements of the <I-N-
C-A> ontology). I-X can therefore provide collaborative task support and exchange of
structured messages related to plans, activity and the results of such activity. These
types of information can be exchanged with other tools via OWL, RDF or other
languages. The system includes a planner that can compose a suitable plan for the
given tasks when provided with a library of standard operating procedures or
processes, and knowledge of other agents or services that it may use.

Figure 2 shows an I-X Process Panel (I-P2) and associated I-X Tools. The I-Space
tool maintains agent relationships. The relationships can be obtained from agent
services such as KAoS. I-X Process Panels can also link to semantic web information
and web services, and can be integrated via “I-Q” adaptors [11] to appear in a natural
way during planning and in plan execution support.

Fig. 2. -X Process Panel for a Coalition Search and Rescue Task

I-X work to date has concentrated on dynamically determined workflows at
execution time – using knowledge of services and other agent availability, etc.
However, it also offers a process editor for creating process models (I-DE) to populate
the domain model and an AI planner (O-Plan) which allows for hierarchical plan
creation, precondition achievement, consistent binding of multiple variables, temporal
constraint checking, and so forth.

9

4.2 Semantic Firewall

Another application area allowing us to validate our approach is the Semantic
Firewall (SFW) project, developed in collaboration with University of Southampton,
IT Innovation, and SRI International [1]1. In addition to performing standard policy
management functions, the system will take as an input a desired client workflow of
Grid Services invocations and verify whether the client is authorized to execute such a
workflow in the domain controlled by a given instance of the SFW environment.
Additionally the policy system may generate obligations in the form of grid service
invocations. These obligations have to be executed during the original workflow; for
instance in order to preserving provenance2 of the calculation results. In effect, the
initial workflow can be modified and amended with the policies. The resulting
policies embedded within the contract governing the transaction will be then enforced
by the system as the workflow is enacted.

5. Verification for Policy Compliance in Semantic Web Services
Workflow Composition

Automatic composition of feasible workflows from a dynamic set of available
Semantic Web Services is a research topic that is drawing increasing attention. An
attractive approach argued in this paper, as also proposed in [19], is the application of
existing technology and the mapping of their input and output formats to the emerging
standard of the Semantic Web Services Process Model
(http://www.owl.org/services/owl-s/1.0/). To this end, we are extending our
implementations of I-X and KAoS.

5.1 I-K-C Tool

In the context of CoSAR-TS, we have already integrated KAoS and I-X to allow I-X
to obtain information about the role relationships among human and software actors
(e.g., peers, subordinates, superiors) represented in domains and stored in KAoS as
ontological concepts. I-X is also already able to use the KAoS policy disclosure
interface to learn about the impact of policies on its planned actions. This is the first
step toward mutual integration of the planning and policy verification components.

I-K-C (Fig. 3) is a name of the tool, integrating I-X and KAoS, enabling Semantic
Web Services workflow composition consistent with policies that govern composition
and enactment. This approach enables the importation of services described in OWL-
S into the planner, augmenting any predefined processes already in the process
library. KAoS verifies constructed partial plans for policy compliance. The final plan,
represented in OWL-S ontology form, can be exported for use in various enactment
systems or can be used to guide the dynamic reactive execution of those plans in I-P2.

1 See http://ontology.ihmc.us/SemanticServices/S-F/Example/index.html for an example

scenario with policies encoded using the KAoS Policy syntax.
2 http://www.pasoa.org/index.html

10

Fig. 3. Cooperation between I-X and KAoS in the process of semantic workflow composition

5.2 Mapping the OWL-S Representation of Process to the KAoS Concept of
Action

The OWL-S concept of Process maps semantically to the KAoS concept of Action1.
Unfortunately, OWL-S made a dramatic change in representing workflow processes
in the transitioning from the earlier ontology called DAML-S. In DAML-S, processes
were represented as classes whose instances were process executions and whose input
and output parameters were defined as properties of those classes. Parameter
restrictions were represented as range constraints on those parameter properties. In
contrast, OWL-S represents processes them as instances, and parameters are defined
as instances of the class Parameter or its subclasses Input and Output, with their
corresponding parameter restrictions defined by the value of the
process:parameterType property for each parameter. This significant change does not
allow for a straightforward mapping between OWL-S and KAoS concepts using
owl:equivalentClass and owl:equivalentProperty as it had been previously possible in
the case of DAML-S. OWL-S will define process executions as instances of a
ProcessInstance class that refers to its process type. This approach is similar to that
taken in the Process Specification Language (PSL) [20].

In order to use KAoS reasoning capabilities it is now necessary to create an OWL
class based on the OWL-S process definition instance. This is done by changing the
process:parameterType mentioned above to represent the appropriate restrictions. We
are using OWL-S API2 to load OWL-S process workflows, to find all processes
within a workflow, and then to get detailed definitions in order to build, using Jena1,
the corresponding OWL class which is a subclass of the KAoS Action class.

1 http://ontology.ihmc.us/Action.owl
2 http://www.mindswap.org/2004/owl-s/api/
1 http://jena.sourceforge.net/

11

The change in the representation of the process from DAML-S to OWL-S has other
consequences:

• It is not possible to build hierarchies of processes at different levels of
abstraction using rdfs:subClassOf as it is, for instance, possible in the KAoS
ontology of actions.

• It does not allow the representation of an actual instance of a process—a very
concrete realization of the process. Again, in KAoS the instance of an action is
used to describe the currently enacted event and is then used to find whether
there are policies applicable to this situation. The envisioned process control
ontology, announced as part of the future release of OWL-S, will clearly need
methods to represent actual events and their relation to processes.

• Since, as just noted, the process instance does not represent the actual event
anymore, the fact that the process in OWL-S is a subclass of time-
entry:IntervalEvent, carried over from DAML-S, has become a self-
contradiction. (The developers of OWL-S have promised that this issue will be
resolved in the near future).

In short, the change of representation of processes between DAML-S and OWL-S
was motivated by difficulties related to usage of classes of processes in collections
and other issues. However, addressing this problem has created the challenges in the
representation of policies in KAoS mentioned above. We hope that the promised
improvements in future versions of OWL-S will help to address these issues.

5.3. KAoS Capabilities for Analyzing Action Classes

After a particular action is extracted from the workflow and converted into a
corresponding action class, it is examined to determine its compliance with the
relevant policies in force. The process of workflow policy compliance checking is
different than that of checking authorization and obligations of an action instance in
policy enforcement as described in section 3. In workflow policy compliance
checking, we are not dealing with an action instance but instead an action class.
Therefore we must use subsumption reasoning in place of classification reasoning: in
other words, KAoS must find relations between the current action class and action
classes associated with policies. Fortunately, this is the same kind of reasoning we use
to perform policy analyses such as policy deconfliction [4]—these analyses also
involve discovering relations (e.g., subsumption, disjointment) between action classes
associated with policies.

Such analyses will often lead to deterministic conclusions—for example that a
given process will be authorized or forbidden or that it will definitely generate an
obligation. Results will always be deterministic if the given action class representing
the investigated process is a subclass of either:

• a single policy action class, or
• a union of some policy action classes, respectively representing either

authorization or obligation policies.
Sometimes, however, the analyses can be nondeterministic—that is, we may only

be able to conclude that a given process instance could possibly be authorized, or that
it may possibly generate obligations. This kind of result will occur if the given action
class, representing the process in question, is neither fully subsumed not fully disjoint
with a single policy action class or their unions respectively representing either

12

authorization or obligation policies. In this case, KAoS can build a representation of
the action class (either the class that corresponds to the portion of the action class in
the authorization request or that generates a given obligation) by computing the
difference between the current action class and the relevant policy action class(es).
The algorithm is identical to the one described in [3] for policy harmonization.
However, we are still working out how to generically translate that new class back
into OWL-S process instance representation.

A first-cut of additional KAoS ontology components has been developed, enabling
annotation of workflow with the results of the policy analyses as described above. The
appropriate mark-up is added to the original OWL-S workflow using the OWL-S API
and sent back to the I-X planner.

5.4. Example: Planning Rescue Operation under Coalition Policy Constraints

The CoSAR-TS scenario described in section 4 is being used to test the capabilities
just described. Each time a new search and rescue situation is undertaken; the SAR
coordinator gathers available information about the accident and constructs an
appropriate goal for the planner. The goal could, for instance, contain information
about the kind of injuries sustained and the approximate location of the victim. The
planner begins with the selection of an initial plan template that is best for the given
situation. It then builds OWL-S profiles for each of the necessary services and queries
the Coalition Matchmaker to learn about OWL-S descriptions of registered search and
rescue resources. This results in the first approximation of the plan expressed as the
OWL-S Process Model. For instance, if the downed pilot has serious burn injuries, the
planner will ask the Matchmaker about which services are offered by the burn injuries
treatment unit in each medical care center. Subsequently it will ask for available
rescue resources, which can pick-up pilot from the sea and deliver it to the chosen
hospital (i.e., Arabello). The best result is selected and the OWL-S Process Model is
submitted for verification. During workflow analysis, KAoS determines that there is
an obligation policy requiring notification of the coalition commander when the
downed pilot is successfully recovered. The appropriate process invoking the
Notification Service available in the environment as the Web service is inserted into
the model and returned to the planner.

6. Enforcement of Policies during Workflow Enactment

Not every aspect of policy compliance can be checked at planning time. Thus we have
designed KAoS so that the policy service can independently enforce policies during
workflow execution. The policies governing both authorization and obligation of
clients and servers are stored in KAoS and checked by authorized parties. Whereas
other approaches to securing Semantic Web Services are limited to either marking
service advertisement with requirements for authentication and communication and
enforcing compliance with these requirements [5] or by attaching conditions to inputs,
outputs and effects of services, KAoS can automatically enforce any sort of policy by
integration of Semantic Web Services with KAoS enforcers; a component intercepting
requests to a service and consulting KAoS about their authorization and obligation.

13

KAoS is able to reason about the entire action performed by the services; not only
about security credentials attached to the request. Additionally, KAoS is used to
generate obligations created during a usage of the services.

6.1 Matchmaker Policy Enforcement – CoSAR-TS scenario

While annotation of the Semantic Matchmaker service profiles allows registered
service providers to describe required security profiles [5], it does not allow owners of
infrastructure resources (e.g., computers, networks), client organizations (coalition
organizations, national interest groups), or individuals to specify or enforce policy
from their unique perspectives. For example, the policy that coalition members cannot
use Gaoan transports is not something that can always be anticipated and specified
within the Matchmaker service profile. Neither would Matchmaker service profile
annotations be an adequate implementation for a US policy obligating encryption,
prioritizing the allocation of network bandwidth, or requiring the logging of certain
sorts of messages.

Moreover, the semantics of these policies cannot currently be expressed in terms of
the current OWL-S specification of conditional constraints. Even if they were
expressible, organizations and individuals may prefer to keep policy stores, reasoners,
and enforcement capabilities within their private enclaves. This may be motivated by
both the desire to maintain secure control over sensitive components as well as to
keep other coalition members from becoming aware of private policies. For example,
coalition members may not want Gao to be aware that the offer of their helicopters to
rescue the downed airman will be automatically filtered out by policy.

6.2 Generic Semantic Web Service Enforcer

We have defined enforcers that intercept SOAP messages from the Matchmaker and
filter results consistent with coalition policies. In our CoSAR-TS demonstration, these
policies prevent the use of Gaoan resources.

We are actively working on the SOAP-enabled enforcer to understand arbitrary
Semantic Web Service invocations so it can apply appropriate authorization policies
to them. Additionally, we plan to equip the enforcer with a mechanism to perform
obligation policies, which will be in the form of other Web Service invocations. For
instance it can be imagined that some policy may require consultation or registration
of performed transactions in some logging service available as a Web Service audit
entity.

7. Conclusions

KAoS provides necessary capabilities to verify and enforce user defined policy in the
automatic process of planning and executing workflows of semantically described
processes in the area of processes building such workflows. Future work will
investigate how to take a context surrounding the process (i.e., processes and control
constructs) in a given workflow into account.

14

Currently KAoS is able to analyze OWL-S encoded workflows; however it can be
extended to understand other form of descriptions (e.g., WSMO (Web Service
Modeling Ontology)1) that share similar concepts of basic process and workflow
composition abstractions.

Acknowledgements

This material is based on research sponsored by the Defense Advanced Research
Projects Agency (DARPA) CoABS, DAML, and Ultra*og programs the US Air Force
Research Laboratory under agreement numbers F30602-00-2-0577 and F30602-03-2-
0014. The U.S. Government, IHMC, and the University of Edinburgh are authorized
to reproduce and distribute reprints and on-line copies for their purposes
notwithstanding any copyright annotation hereon. Thanks to the other members of the
KAoS project team: Maggie Breedy, Larry Bunch, Matthew Johnson, Hyuckchul
Jung, Shri Kulkarni, James Lott, William Taysom, and Gianluca Tonti. We are also
grateful for the contributions of Mark Burstein, Pat Hayes, Luc Moreau, Niranjan
Suri, Paul Feltovich, Richard Fikes, Jessica Jenkins, Bill Millaar, Deborah
McGuinness, Rich Feiertag, Timothy Redmond, Rebecca Montanari, Sue Rho, Ken
Ford, Mark Greaves, Jack Hansen, James Allen, and Robert Hoffman.

References

[1] Ashri, R., Payne, T. R., & Surridge, M. (2004). Towards a Semantic Web Security
Infrastructure. AAAI Spring Symposium on Semantic Web Services. Stanford
University,

[2] Bradshaw, J. M., Beautement, M. Breedy, L. Bunch, S. Drakunov, P. Feltovich, P.,
Raj, A., Johnson, M., Kulkarni, S., Suri, N. & A. Uszok (2004). Making agents
acceptable to people. In N. Zhong & J. Liu (Ed.), Intelligent Technologies for
Information Analysis: Advances in Agents, Data Mining, and Statistical Learning.
(pp. in press). Berlin: Springer Verlag.

[3] Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M. H., Acquisti,
A., Benyo, B., Breedy, M. R., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S.,
Lott, J., Sierhuis, M., & Van Hoof, R. (2003). Representation and reasoning for
DAML-based policy and domain services in KAoS and Nomads. Proceedings of the
Autonomous Agents and Multi-Agent Systems Conference (AAMAS 2003). Melbourne,
Australia, New York, NY: ACM Press,

[4] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S. (2000). Ponder: A Language
for Specifying Security and Management Policies for Distributed Systems, Version
2.3. Imperial College of Science, Technology and Medicine, Department of
Computing, 20 October 2000.

[5] Denker, G., Kagal, L., Finin, T., Paolucci, M., & Sycara, K. (2003). Security for
DAML Web Services: Annotation and Matchmaking. In D. Fensel, K. Sycara, & J.
Mylopoulos (Ed.), The Semantic Web—ISWC 2003. Proceedings of the Second
International Semantic Web Conference, Sanibel Island, Florida, USA, October 2003,
LNCS 2870. (pp. 335-350). Berlin: Springer.

[6] Feltovich, P., Bradshaw, J. M., Jeffers, R., & Uszok, A. (2003). Social order and
adaptability in animal, human, and agent communities. Proceedings of the Fourth

1 http://www.wsmo.org/

15

International Workshop on Engineering Societies in the Agents World, (pp. 73-85).
Imperial College, London,

[7] Fensel, D., Hendler, J., Lieberman, H., & Wahlster, W. (Ed.). (2003). Spinning the
Semantic Web. Cambridge, MA: The MIT Press.

[8] Kagal, L., Finin, T., & Joshi, A. (2003). A policy-based approach to security for the
Semantic Web. In D. Fensel, K. Sycara, & J. Mylopoulos (Ed.), The Semantic Web—
ISWC 2003. Proceedings of the Second International Semantic Web Conference,
Sanibel Island, Florida, USA, October 2003, LNCS 2870. (pp. 402-418).: Springer.

[9] Li, N., Grosof, B. N., & Feigenbaum, J. (2003). Delegation logic: A logic-based
approach to distributed authorization. ACM Transactions on Information Systems
Security (TISSEC), 1-42.

[10] McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic Web Services. IEEE
Intelligent Systems, 46-53.

[11] Potter, S., Tate, A., & Dalton, J. (2003). I-X Task support on the Semantic Web.
Poster and Demonstration Proceedings for the Second International Semantic Web
Conference (ISWC 2003). Sanibel Island, FL,

[12] Seamons, K. E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H., &
Yu, L. (2002). Requirements for policy languages for trust negotiation. Proceedings
of the Third International Workshop on Policies for Distributed Systems and
Networks (POLICY 2002). Monterey, CA,

[13] Tate, A. (2003). Coalition task support using I-X and <I-N-C-A>. In Proceedings of
the Third International Central and Eastern European Conference on Multi-Agent
Systems (CEEMAS 2003), 16-18 June, Prague, Czech Republic, LNAI 2691. (pp. 7-
16). Berlin: Springer.

[14] Tate, A., Dalton, J., & Potter, S. (2004). Intelligible Messaging: Activity-oriented
instant messaging. Submitted to the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS-2004). Whistler, Canada,

[15] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., & Uszok, A. (2003).
Semantic Web languages for policy representation and reasoning: A comparison of
KAoS, Rei, and Ponder. In D. Fensel, K. Sycara, & J. Mylopoulos (Ed.), The
Semantic Web—ISWC 2003. Proceedings of the Second International Semantic Web
Conference, Sanibel Island, USA, 2003, LNCS 2870. (pp. 419-437). Berlin: Springer.

[16] Uszok, A., Bradshaw, J. M., Hayes, P., Jeffers, R., Johnson, M., Kulkarni, S., Breedy,
M. R., Lott, J., & Bunch, L. (2003). DAML reality check: A case study of KAoS
domain and policy services. Submitted to the International Semantic Web Conference
(ISWC 03). Sanibel Island, Florida,

[17] Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N., Hayes, P., Breedy, M. R., Bunch, L.,
Johnson, M., Kulkarni, S., & Lott, J. (2003). KAoS policy and domain services:
Toward a description-logic approach to policy representation, deconfliction, and
enforcement. Proceedings of Policy 2003. Como, Italy,

[18] Wright, S., Chadha, R., & Lapiotis, G. (2002). Special Issue on Policy-Based
Networking. IEEE Network, 16(2), 8-56.

[19] Wu, D., Parsia, B., Sirin, E., Hendler, J., & Nau, D. (2003). Automating DAML-S
Web Services composition using SHOP2. In D. Fensel, K. Sycara, & J. Mylopoulos
(Ed.), The Semantic Web—ISWC 2003. Proceedings of the Second International
Semantic Web Conference, Sanibel Island, Florida, USA, October 2003, LNCS 2870.
(pp. 195-210). Berlin: Springer.

 [20] Schlenoff, C., Gruninger M., Tissot, F., Valois, J., Lubell, J., Lee, J. (2000). The
Process Specification Language (PSL): Overview and Version 1.0 Specification,"
NISTIR 6459, National Institute of Standards and Technology, Gaithersburg, MD.

