
H I S T O R I E S  A N D  F U T U R E S

2 1541-1672/13/$31.00 © 2013 IEEE Ieee InTeLLIGenT SySTemS
Published by the IEEE Computer Society

H U M A N - C E N T E R E D  C O M P U T I N G

The Seven Deadly Myths 
of “Autonomous Systems”

department,1 is a recent US Defense Science Board 
(DSB) Task Force Report on “The Role of Auton-
omy in DoD Systems.” This report affords an op-
portunity to examine the concept of autonomous 
systems in light of the new DSB fi ndings. This 
theme will continue in a future column, in which 
we’ll outline a constructive approach to design au-
tonomous capabilities based on a human-centered 
computing perspective. But to set the stage, in this 
essay we bust some “myths” of autonomy.

Myths of Autonomy
The reference in our title to the “seven deadly 
myths” of autonomous systems alludes to the 
seven deadly sins. The latter were so named not 
only because of their intrinsic seriousness but also 
because the commission of one of them would 
engender further acts of wrongdoing. As design-
ers conceive and implement what are commonly 
(but mistakenly) called autonomous systems, they 
have succumbed to myths of autonomy that are 
not only damaging in their own right but are also 
damaging by their continued propagation—that 
is, because they engender a host of other serious 
misconceptions and consequences. Here, we pro-
vide reasons why each of these myths should be 
called out and cast aside.

Myth 1: “Autonomy” is unidimensional. There 
is a myth that autonomy is some single thing and 
that everyone understands what it is. However, 
the word is employed with different meanings and 
intentions.2 “Autonomy” is straightforwardly de-
rived from a combination of Greek terms signi-
fying self (auto) governance (nomos), but it has 
two different senses in everyday usage. In the fi rst 
sense, it denotes self-suffi ciency—the capability of 

an entity to take care of itself. This sense is pres-
ent in the French term autonome when, for ex-
ample, it’s applied to an individual who is capable 
of independent living. The second sense refers to 
the quality of self-directedness, or freedom from 
outside control, as we might say of a political dis-
trict that has been identifi ed as an “autonomous 
region.”

The two different senses affect the way autonomy 
is conceptualized, and infl uence tacit claims about 
what “autonomous” machines can do. For exam-
ple, in a chapter from a classic volume on agent au-
tonomy, Sviatoslav Brainov and Henry Hexmoor3

emphasize how varying degrees of  autonomy serve 
as a relative measure of self- directedness—that is, 
independence of an agent from its physical envi-
ronment or social group. On the other hand, in the 
same volume Michael Luck and his colleagues,4

unsatisfi ed with defi ning autonomy in such rela-
tive terms, argue that the self-generation of goals 
should be the defi ning characteristic of autonomy. 
Such a perspective characterizes the machine in ab-
solute terms that refl ect the belief of these research-
ers in autonomy as self-suffi ciency.

It should be evident that independence from 
outside control doesn’t entail the self-suffi ciency 
of an autonomous machine. Nor do a machine’s 
autonomous capabilities guarantee that it will be 
 allowed to operate in a self-directed manner. In 
fact,  human-machine systems involve a dynamic 
balance of self-suffi ciency and self-directedness. 
We will now elaborate on some of the subtleties 
relating to this balance.

Figure 1 illustrates some of the challenges faced 
by designers of machine capabilities. A major mo-
tivation for such capabilities is to reduce the bur-
den on human operators by increasing a machine’s 
self-suffi ciency to the point that it can be trusted 
to operate in a self-directed manner. However, 
when the self-suffi ciency of the machine capabil-
ities is seen as inadequate for the circumstances, 
particularly in situations where the consequences 
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of error may be disastrous, it is com-
mon to limit the self-directedness of 
the machine. For example, in such 
circumstances a human may take 
control manually, or an automated 
policy may come into play that pre-
vents the machine from doing harm 
to itself or others through faulty ac-
tions. Such a scenario brings to mind 
early NASA Mars rovers whose capa-
bilities for autonomous action weren’t 
fully exercised due to concerns about 
the high cost of failure. Because their 
advanced capabilities for autonomous 
action weren’t fully trusted, NASA 
decided to micromanage the rov-
ers through a sizeable team of engi-
neers. This example also highlights 
that the capabilities machines have 
for autonomous action interact with 
the responsibility for outcomes and 
delegation of authority. Only people 
are held responsible for consequences 
(that is, only people can act as prob-
lem holders) and only people de-
cide on how authority is delegated to 
automata.5

When self-directedness is reduced 
to the point that the machine is pre-
vented from fully exercising its ca-
pabilities (as in the Mars rover ex-
ample), the result can be described 
as under-reliance on the technology. 
That is, although a machine may be 
sufficiently competent to perform 
a set of actions in the current situa-
tion, human practice or policy may 
prevent it from doing so. The flipside 
of this error is to allow a  machine 
to operate too freely in a situation 
that outstrips its capabilities (such 
as high self- directedness with low 
self- sufficiency). This error can be 
 described as over-trust.

In light of these observations, we 
can characterize the primary chal-
lenge for the designers of autono-
mous machine capabilities as a mat-
ter of moving upward in a 45-degree 
diagonal on Figure 1—increasing 

 machine capabilities while main-
taining a ( dynamic) balance between 
self- directedness and self-sufficiency. 
However, even when the self-direct-
edness and self-sufficiency of au-
tonomous capabilities are balanced 
 appropriately for the demands of 
the situation, humans and machines 
working together frequently encoun-
ter potentially debilitating problems 
relating to insufficient observabil-
ity or understandability (upper right 
quadrant of Figure 1). When highly 
autonomous machine capabilities 
aren’t well understood by people or 
other machines working with them, 
work effectiveness suffers.7,8

Whether human or machine, a 
“team player” must be able to ob-
serve, understand, and predict the 
state and actions of others.9 Many 
examples can be found in the litera-
ture of inadequate observability and 
understandability as a problem in 
human-machine interaction.5,10 The 
problem with what David Woods 
calls “strong silent automation” is 
that it fails to communicate effec-
tively those things that would allow 
humans to work interdependently 
with it—signals that allow opera-
tors to predict, control, understand, 
and anticipate what the machine is 
or will be doing. As anyone who has 
wrestled with automation can at-
test, there’s nothing worse than a 
so-called smart machine that can’t 
tell you what it’s doing, why it’s do-
ing something, or when it will finish. 
Even more frustrating—or danger-
ous—is a machine that’s incapable of 
responding to human direction when 
something (inevitably) goes wrong.

To sum up our discussion of the 
first myth: First, “autonomy” isn’t a 
unidimensional concept—it’s more 
useful to describe autonomous sys-
tems at least in terms of the two di-
mensions of self-directedness and 
self-sufficiency. Second, aspects of 

self-directedness and self- sufficiency 
must be balanced appropriately. 
Third, to maintain desirable proper-
ties of human-machine teamwork, 
particularly when advanced  machine 
capabilities exhibit a significant 
 degree of competence and self-gover-
nance, team players must be able to 
communicate effectively those  aspects 
of their behavior that allow others to 
understand them and to work inter-
dependently with them.

Myth 2: The conceptualization 
of “levels of autonomy” is a use-
ful  scientific grounding for the de-
velopment of autonomous system 
roadmaps. Since we’ve just argued 
for discarding the myth that auton-
omy is unidimensional, we shouldn’t 
have to belabor the related myth that 
machine autonomy can be measured 
on a single ordered scale of increasing 
levels. However, because this second 
myth is so pervasive, it merits sepa-
rate discussion.

A recent survey of human-robot in-
teraction concluded that “perhaps 
the most strongly human-centered 
 application of the concept of auton-
omy is in the notion of level of au-
tonomy.”11 However, one of the most 
striking recommendations of the DSB 
report on the role of autonomy is its 

Figure 1. Challenges faced by designers 
of autonomous machine capabilities.6 
When striving to maintain an effective 
balance between self-sufficiency and 
self-directedness for highly capable 
machines, designers encounter the 
additional challenge of making the 
machine understandable.

Burden

Not well
understoodOver-trust

Under-
reliance

Self-sufficiency

Se
lf-
di
re
ct
ed
ne
ss

High

High
Low

IS-28-03-HCC.indd   3 16/07/13   12:35 PM



4  www.computer.org/intelligent Ieee InTeLLIGenT SySTemS

 recommendation that the Department 
of Defense (DoD) should abandon the 
debate over definitions of levels of au-
tonomy.12 The committee received in-
put from multiple organizations on 
how some variation of definitions 
across levels of autonomy could guide 
new designs. The retired flag officers, 
technologists, and academics on the 
task force overwhelmingly and unani-
mously found the definitions irrelevant 
to the real problems, cases of success, 
and missed opportunities for effectively 
utilizing increases in autonomous ca-
pabilities for defense missions.

The two paragraphs (from pp. 23–
24) summarizing the DSB’s rationale 
for this recommendation are worth 
citing verbatim:

An … unproductive course has been the 

numerous attempts to transform concep-

tualizations of autonomy made in the 

1970s into developmental roadmaps. ... 

Sheridan’s taxonomy [of levels of auto-

mation] ... is often incorrectly interpreted 

as implying that autonomy is simply a 

delegation of a complete task to a com-

puter, that a vehicle operates at a single 

level of autonomy and that these levels are 

discrete and represent scaffolds of increas-

ing difficulty. Though attractive, the con-

ceptualization of levels of autonomy as a 

scientific grounding for a developmental 

roadmap has been unproductive. ... The 

levels served as a tool to capture what was 

occurring in a system to make it autono-

mous; these linguistic descriptions are not 

suitable to describe specific milestones 

of an autonomous system. ... Research 

shows that a mission consists of dynami-

cally changing functions, many of which 

can be executing concurrently as well as 

sequentially. Each of these functions can 

have a different allocation scheme to the 

human or computer at a given time.12

There are additional reasons why 
the levels of automation notion are 
problematic.

First, functional differences matter. 
The common understanding of the 
levels assumes that significantly dif-
ferent kinds of work can be handled 
equivalently (such as task work and 
teamwork; reasoning, decisions, and 
actions). This reinforces the errone-
ous notion that “automation activities 
simply can be substituted for human 
activities without otherwise affecting 
the operation of the system.”13

Second, levels aren’t consistently 
ordinal. It isn’t always clear whether 
a given action should be character-
ized as “lower” or “higher” than 
another on the scale of autonomy. 
Moreover, a given machine capabil-
ity operating in a specific situation 
may simultaneously be “low” on self-
sufficiency while being “high” on 
self-directedness.7

Third, autonomy is relative to the 
context of activity. Functions can’t 
be automated effectively in isolation 
from an understanding of the task, 
the goals, and the context.

Fourth, levels of autonomy encour-
age reductive thinking. For example, 
they facilitate the perspective that ac-
tivity is sequential when it’s actually 
simultaneous.14

Fifth, the concept of levels of au-
tonomy is insufficient to meet both 
current and future challenges. This 
was one of the most significant find-
ings of the DoD report. For exam-
ple, many challenges facing human- 
machine interaction designers involve 
teamwork rather than the separa-
tion of duties between the human 
and the machine.9 Effective team-
work involves more than effective 
task distribution; it looks for ways 
to support and enhance each mem-
ber’s performance6—this need isn’t 
addressed by the levels of autonomy 
conceptualization.

Sixth, the concept of levels of auton-
omy isn’t “human-centered.” If it were, 
it wouldn’t force us to  recapitulate 

the requirement that technologies be 
useable, useful, understandable, and 
observable.

Last, the levels provide insufficient 
guidance to the designer. The chal-
lenge of bridging the gap from cog-
nitive engineering products to soft-
ware engineering results is one of the 
most daunting of current challenges 
and the concept of levels of autonomy 
provides no assistance in dealing with 
this issue.

Myth 3: Autonomy is a widget. The 
DSB report points (on p. 23) to the 
fallacy of “treating autonomy as a 
widget”:

The competing definitions for autonomy 

have led to confusion among develop-

ers and acquisition officers, as well as 

among operators and commanders. The 

attempt to define autonomy has resulted 

in a waste of both time and money spent 

debating and reconciling different terms 

and may be contributing to fears of un-

bounded autonomy. The definitions have 

been unsatisfactory because they typi-

cally try to express autonomy as a wid-

get or discrete component, rather than 

a capability of the larger system enabled 

by the integration of human and machine 

abilities.12

In other words, autonomy isn’t a 
discrete property of a work system, 
nor is it a particular kind of technol-
ogy; it’s an idealized characterization 
of observed or anticipated interac-
tions between the machine, the work 
to be accomplished, and the situation. 
To the degree that autonomy is actu-
ally realized in practice, it’s through 
the combination of these interactions.

The myth of autonomy as a widget 
engenders the misunderstandings im-
plicit in the next myth.

Myth 4: Autonomous systems are 
autonomous. Strictly speaking, the 

IS-28-03-HCC.indd   4 16/07/13   12:35 PM



may/june 2013 www.computer.org/intelligent 5

term “autonomous system” is a mis-
nomer. No entity—and, for that mat-
ter, no person—is capable enough 
to be able to perform competently 
in every task and situation. On the 
other hand, even the simplest ma-
chine can seem to function “autono-
mously” if the task and context are 
sufficiently constrained. A thermostat 
exercises an admirable degree of self- 
sufficiency and self-directedness with 
respect to the limited tasks it’s de-
signed to perform through the use of 
a simple form of automation (at least 
until it becomes miscalibrated).

The DSB report wisely observes 
that “… there are no fully autono-
mous systems just as there are no 
fully autonomous soldiers, sailors, 
airmen, or Marines. … Perhaps the 
most important message for com-
manders is that all machines are su-
pervised by humans to some degree, 
and the best capabilities result from 
the coordination and collaboration of 
humans and machines” (p. 24).12

Machine designs are always created 
with respect to a context of design as-
sumptions, task goals, and boundary 
conditions. At the boundaries of the 
operating context for which the ma-
chine was designed, maintaining ad-
equate performance might become 
a challenge. For instance, a typical 
home thermostat isn’t designed to 
work as an outdoor sensor in the sig-
nificantly subzero climate of Antarc-
tica. Consider also the work context 
of a Navy Seal whose job it is to per-
form highly sensitive operations that 
require human knowledge and rea-
soning skills. A Seal doing his job is 
usually thought of as being highly au-
tonomous. However, a more careful 
examination reveals his interdepen-
dence with other members of his Seal 
team to conduct team functions that 
can’t be performed by a single indi-
vidual, just as the team is interdepen-
dent with the overall Navy mission 

and with the operations of other co-
located military or civilian units.

What’s the result of belief in this 
fourth myth? People in positions of 
responsibility and authority might 
focus too much on autonomy-related 
problems and fixes while failing to 
understand that self-sufficiency is al-
ways relative to a situation. Sadly, 
in most cases machine capabilities 
are not only relative to a set of pre-
defined tasks and goals, they are 
relative to a set of fixed tasks and 
goals. A software system might per-
form gloriously without supervision 
in circumstances within its compe-
tence envelope (itself a reflection of 
the designer’s intent), but fail misera-
bly when the context changes to some 
circumstance that pushes the larger 
work system over the edge.15 Al-
though some tasks might be worked 
with high efficiency and accuracy, the 
potential for disastrous fragility is 
ever present.16 Speaking of autonomy 
without adequately characterizing as-
sumptions about how the task is em-
bedded in the situation is dangerously 
misguided.

Myth 5: Once achieved, full auton-
omy obviates the need for human-
machine collaboration. Much of the 
early research on autonomous sys-
tems was motivated by situations in 
which autonomous systems were re-
quired to replace humans, in theory 
minimizing the need for consider-
ing the human aspects of such solu-
tions. For example, one of the earliest 
high-consequence applications of so-
phisticated agent technologies was in 
NASA’s Remote Agent Architecture, 
designed to direct the activities of un-
manned spacecraft engaged in distant 
planetary exploration.17 The Remote 
Agent Architecture was expressly de-
signed for use in human-out-of-the-
loop situations where response laten-
cies in the transmission of round-trip 

control sequences from earth would 
have impaired a spacecraft’s ability 
to respond to urgent problems or to 
take advantage of unexpected science 
opportunities.

Since those early days, most auton-
omy research has been pursued in a 
technology-centric fashion, as if full 
machine autonomy—complete inde-
pendence and self-sufficiency—were 
a holy grail. A primary, ostensible 
reason for the quest is to reduce man-
ning needs, since salaries are the larg-
est fraction of the costs of sociotech-
nical systems. An example is the US 
Navy’s “Human Systems Integration” 
program, initially founded on a belief 
that an increase in autonomous ma-
chine capabilities (typically developed 
without adequate consideration for 
the complexities of  interdependence 
in mixed human-machine teams) 
would enable the Navy to crew large 
vessels with smaller  human comple-
ments. However, reflection on the 
nature of human work reveals the 
shortsightedness of such a singular 
and short-term focus: What could 
be more troublesome to a group of 
 individuals engaged in dynamic, fast-
paced, real-world collaboration cop-
ing with complex tasks and shifting 
goals than a colleague who is per-
fectly able to perform tasks alone but 
lacks the expertise required to coor-
dinate his or her activities with those 
of others?

Of course, there are situations 
where the goal of minimizing hu-
man involvement with autonomous 
systems can be argued effectively—
for example, some jobs in industrial 
manufacturing. However, it should 
be noted that virtually all of the most 
challenging deployments of autono-
mous systems to date—such as mili-
tary unmanned air vehicles, NASA 
rovers, unmanned underwater ve-
hicles, and disaster inspection ro-
bots—have involved people in  crucial 
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roles where expertise is a must. Such 
involvement hasn’t been merely to 
make up for the current limitations 
on machine capabilities, but also be-
cause their jointly coordinated efforts 
with humans were—or should have 
been—intrinsically part of the mis-
sion planning and operations itself.

What’s the result of belief in this 
myth? Researchers and their sponsors 
begin to assume that “all we need is 
more autonomy.” This kind of sim-
plistic thinking engenders the even 
more grandiose myth that human 
factors can be avoided in the design 
and deployment of machines. Care-
ful consideration will reveal that, in 
addition to more machine capabilities 
for task work, there’s a need for the 
kinds of breakthroughs in human-
machine teamwork that would en-
able autonomous systems not merely 
to do things for people, but also to 
work together with people and other 
systems. This capacity for teamwork, 
not merely the potential for expanded 
task work, is the inevitable next leap 
forward required for more effective 
design and deployment of autono-
mous systems operating in a world 
full of people.18

Myth 6: As machines acquire more 
autonomy, they will work as simple 
substitutes (or multipliers) of human 
capability. The concept of automa-
tion began with the straightforward 
objective of replacing whenever fea-
sible any tedious, repetitive, dirty, or 
dangerous task currently performed 
by a human with a machine that 
could do the same task better, faster, 
or cheaper. This was a core concept 
of the Industrial Revolution. The en-
tire field of human factors emerged 
circa World War 1 in recognition of 
the need to consider the human oper-
ator in industrial design. Automation 
became one of the first issues to at-
tract the notice of cyberneticists and 

human factors researchers during and 
immediately after World War II. Pio-
neering researchers attempted to sys-
tematically characterize the general 
strengths and weaknesses of humans 
and machines. The resulting disci-
pline of “function allocation” aimed 
to provide a rational means of deter-
mining which system-level functions 
should be carried out by humans and 
which by machines.

Obviously, the suitability of a par-
ticular human or machine to take on a 
particular task will vary over time and 
in different situations. Hence, the con-
cepts of adaptive or dynamic function 
allocation and adjustable autonomy 
emerged with the hope that shifting 
responsibilities between humans and 
machines would lead to machine and 
work designs more appropriate for the 
emerging sociotechnical workplace.2 
Of course, certain tasks, such as those 
requiring sophisticated judgment, 
couldn’t be shifted to machines, and 
other tasks, such as those requiring ul-
tra-precise movement, couldn’t be per-
formed by humans. But with regard 
to tasks where human and machine 
capabilities overlapped—the area of 
variable task assignment—software-
based decision-making schemes were 
proposed to allow tasks to be allo-
cated according to the potential per-
former’s availability.

Over time, it became plain to re-
searchers that things weren’t this sim-
ple. For example, many functions in 
complex systems are shared by hu-
mans and machines; hence, the need 
to consider synergies and goal con-
flicts among the various performers 
of joint actions. Function allocation 
isn’t a simple process of transfer-
ring responsibilities from one com-
ponent to another. When system de-
signers automate a subtask, what 
they’re really doing is performing a 
type of task distribution and, as such, 
have introduced novel elements of 

 interdependence within the work sys-
tem.7 This is the lesson to be learned 
from studies of the “substitution 
myth,”13 which conclude that reduc-
ing or expanding the role of automa-
tion in joint human-machine systems 
may change the nature of interdepen-
dent and mutually adapted activities 
in complex ways. To effectively ex-
ploit the capabilities that automation 
provides (versus merely increasing au-
tomation), the task work—and the 
interdependent teamwork it induces 
among players in a given situation—
must be understood and coordinated 
as a whole.

It’s easy to fall prey to the fallacy 
that automated assistance is a simple 
substitute or multiplier of human ca-
pability because, from the point of 
view of an outsider observing the as-
sisted humans, it seems that—in suc-
cessful cases, at least—the people are 
able to perform the task better or 
faster than they could without help. 
In reality, however, help of whatever 
kind doesn’t simply enhance our abil-
ity to perform the task: it changes 
the nature of the task.13,19 To take 
a simple example, the use of a com-
puter rather than a pencil to compose 
a document can speed up the task of 
writing an essay in some respects, 
but sometimes can slow it down in 
other respects—for example, when 
electrical power goes out. The es-
sential point is that it requires a dif-
ferent configuration of human skills. 
Similarly, a robot used to perform a 
household task might be able to do 
many things “on its own,” but this 
doesn’t eliminate the human’s role, it 
changes that role. The human respon-
sibility is now the cognitive task of 
goal setting, monitoring, and control-
ling the robot’s progress (or regress).16

Increasing the autonomy of autono-
mous systems requires different kinds 
of human expertise and not always 
fewer humans. Humans and artificial 
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agents are two disparate kinds of enti-
ties that exist in very different sorts of 
worlds. Humans have rich knowledge 
about the world that they’re trying to 
understand and influence, while ma-
chines are much more limited in their 
understanding of the world that they 
model and affect. This isn’t a matter 
of distinguishing ways that machines 
can compensate for things that hu-
mans are bad at. Rather, it’s a mat-
ter of characterizing interdependence: 
things that machines are good at and 
ways in which they depend on hu-
mans (and other agents) in joint activ-
ity; and things that humans are good 
at and ways in which they depend on 
the machines (and other humans).20

For the foreseeable future this fun-
damental asymmetry, or duality, will 
remain. The brightest machine agents 
will be limited in the generality, if not 
the depth, of their inferential, adap-
tive, social, and sensory capabilities. 
Humans, though fallible, are function-
ally rich in reasoning strategies and 
their powers of observation, learn-
ing, and sensitivity to context. These 
are the things that make adaptability 
and resilience of work systems possi-
ble. Adapting to  appropriate  mutually 

interdependent roles that take advan-
tage of the respective strengths of hu-
mans and machines—and crafting 
natural and effective modes of inter-
action—are key challenges for tech-
nology—not merely the creation of in-
creasingly capable widgets.

What’s the result of belief in the 
myth of machines as simple multi-
pliers of human ability? Because de-
sign approaches based on this myth 
don’t adequately take into consider-
ation the significant ways in which 
the introduction of autonomous capa-
bilities can change the nature of the 
work itself; they lead to “clumsy au-
tomation.” And trying to solve this 
problem by adding more poorly de-
signed autonomous capabilities is, in 
effect, adding more clumsy automa-
tion onto clumsy automation, thereby 
exacerbating the problem that the in-
creased autonomy was intended to 
solve.

Myth 7: “Full autonomy” is not only 
possible, but is always desirable. In 
refutation of the substitution myth, 
Table 1 contrasts the putative benefits 
of automated assistance with the em-
pirical results. Ironically, even when 

technology succeeds in making tasks 
more efficient, the human work-
load isn’t reduced accordingly. Da-
vid Woods and Eric Hollnagel5 sum-
marized this phenomenon as the law 
of stretched systems: “every system 
is stretched to operate at its capac-
ity; as soon as there is some improve-
ment, for example in the form of new 
technology, it will be exploited to 
achieve a new intensity and tempo of 
activity.”

As Table 1 shows, the decision to 
increase the role of automation in 
general, and autonomous capabili-
ties in particular, is one that should 
be made in light of its complex ef-
fects along a variety of dimensions. 
In this article, we’ve tried to make 
the case that full autonomy, the sim-
plistic sense in which the term is usu-
ally employed, is barely possible. This 
table summarizes the reasons why 
increased automation isn’t always 
desirable.

A lthough continuing research to 
make machines more active, adap-
tive, and functional is essential, the 
point of increasing such proficiencies 

Table 1. Putative benefits of automation versus actual experience.21

Putative benefit Real complexity

Increased performance is obtained from “substitution” 
of machine activity for human activity.

Practice is transformed; the roles of people change; old and sometimes beloved habits 
and familiar features are altered—the envisioned world problem.

Frees up human by offloading work to the machine. Creates new kinds of cognitive work for the human, often at the wrong times; every 
automation advance will be exploited to require people to do more, do it faster, or in 
more complex ways—the law of stretched systems.

Frees up limited attention by focusing someone on the 
correct answer.

Creates more threads to track; makes it harder for people to remain aware of and 
 integrate all of the activities and changes around them—with coordination costs, 
 continuously.

Less human knowledge is required. New knowledge and skill demands are imposed on the human and the human might no 
longer have a sufficient context to make decisions, because they have been left out of 
the loop—automation surprise.

Agent will function autonomously. Team play with people and other agents is critical to success—principles of 
 interdependence.

Same feedback to human will be required. New levels and types of feedback are needed to support peoples’ new roles—with 
 coordination costs, continuously.

Agent enables more flexibility to the system in a 
generic way.

Resulting explosion of features, options, and modes creates new demands, types of 
errors, and paths toward failure—automation surprises.

Human errors are reduced. Machines, humans, and macrocognitive work systems are fallible; errors are therefore 
systemic; new problems are associated with human-machine coordination breakdowns; 
machines now obscure information necessary for human  decision making—principles  
of complexity.
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isn’t merely to make the machines 
more independent during times 
when unsupervised activity is desir-
able or necessary (autonomous), but 
also to make them more capable of 
sophisticated interdependent activ-
ity with people and other machines 
when such is required (teamwork). 
Research in joint activity highlights 
the need for autonomous systems to 
support not only the fluid orchestra-
tion of task handoffs among people 
and machines, but also combined 
participation on shared tasks requir-
ing continuous and close interaction 
(coactivity).6,9 Indeed, in situations 
of simultaneous human-agent col-
laboration on shared tasks, people 
and machines might be so tightly in-
tegrated in the performance of their 
work that interdependence is a con-
tinuous phenomenon, and the very 
idea of task handoffs becomes in-
congruous. We see this, for exam-
ple, in the design of work systems 
to support cyber sensemaking, that 
aim to combine the efforts of human 
analysts with software agents in un-
derstanding, anticipating, and re-
sponding to unfolding events in near 
real-time.22

The points mentioned here, like 
the findings of the DSB, focus on 
how to make effective use of the ex-
panding power of machines. The 
myths we’ve discussed lead devel-
opers to introduce new machine ca-
pabilities in ways that predictably 
lead to unintended negative conse-
quences and user-hostile technolo-
gies. We need to discard the myths 
and focus on developing coordina-
tion and adaptive mechanisms that 
turn platform capabilities into new 
levels of mission effectiveness—en-
abled through genuine human-cen-
teredness. In complex and domains 
characterized by uncertainty, ma-
chines that are merely capable of 
performing independent work aren’t 

enough. Instead, we need machines 
that are also capable of working in-
terdependently.6 We commend the 
thoughtful work of the DSB in rec-
ognizing and exemplifying some of 
the significant problems caused by 
the seven deadly myths of auton-
omy, and hope these and similar 
 efforts will lead all of us to sincere 
repentance and reformation.
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