
2	 	 1541-1672/10/$26.00 © 2010 IEEE	 IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

A I i n S p a c e

Assessing Human-
Agent Teams for
Future Space Missions
Nanja J.J.M. Smets, Jurriaan van Diggelen, and Mark A. Neerincx,
TNO Human Factors

Jeffrey M. Bradshaw, IHMC

Catholijn M. Jonker, Lennard J.V. de Rijk, Pieter A.M. Senster, and Ot ten Thije,
Technical University of Delft

Maarten Sierhuis, NASA Ames Research Center

Running computer

simulations of work

practices early on

lets researchers

test human-

agent teams in

dangerous, complex

environments by

incrementally

increasing fidelity,

adding realistic

features, and

incorporating human

participants.

robotic agents, must collaborate closely and
with relative independence from Mission
Control Center for the mission to fulfill its
goal.1–3 Thus, the team must be able to cope
with unexpected events on their own.

Testing requirements of such complex
cognitive-support systems remains challeng-
ing. In general, we must account for three
issues when testing human-robot team de-
signs in these types of environments. First,
although testing a prototype on Mars isn’t
an option, it’s still important to test the pro-
totype in a realistic environment to ensure
the system is suitable for use in the even-
tual context. Second, testing a prototype for
human-robot teams requires involving rep-
resentative human participants, such as as-
tronauts, who are hard to come by. Third,
when testing an adaptive human-robot team
in a complex environment with demanding

tasks, controlling the experiment with labo-
ratory precision is difficult.

We address these issues by choosing the
right experiment in the test space with the
appropriate level of fidelity and realism of
the experiments. The test can start simply,
with low fidelity and realism. (Fidelity refers
to an adequate representation of relevant
rules in a human-agent team that are ad-
dressed in the test and specifically the depen-
dencies. Realism varies from one extreme—
the real environment—to the other, a virtual
environment.) We then increase the fidelity
and realism in subsequent tests.

How do we design an iteration of experi-
ments with the appropriate levels of fidelity
and reality for each of the components? To
help groups of humans and machines meet
these demands, we are developing a mission
execution crew assistant (MECA). For this

A team sets out on a mission to Mars, coping with a dangerous and

complex environment. Communication with Mission Control Cen-

ter is difficult because one-way radio traffic can experience delays of up to

22 minutes. Human and machines, including sophisticated software and

FPO

IS-25-05-VanD.indd 2 12/08/10 2:46 PM

september/october 2010	 www.computer.org/intelligent	 3

purpose, we are deriv-
ing a requirements base-
line for a distributed sys-
tem of electronic partners
(ePartners) to enhance as
tronauts’ self-management
in nominal (normal) and
off-nominal (outside ac-
ceptable limits) actions in
long-duration missions.4
For the iterative devel-
opment, testing, and re-
finement of the use cases,
claims, and requirements
baseline, we use the situ-
ated cognitive engineer-
ing (SCE) method.5 Our
proposed method involves choosing
and combining different types of ex-
periments, and the simulation tool
helps fill in the blank areas in the test
space.

Test Method
It is possible to vary test experiments
by altering the fidelity of the environ-
ment and actors and adjusting the test
environment, from fully virtual to
real world, to mixed reality (a com-
bination of the two). Figure 1 depicts
the test space, with reality on the
x-axis and fidelity on the y-axis. In
earlier research in the MECA project,
we conducted a Wizard of Oz (WoZ)
experiment6 and an experiment in
an analog environment on volca-
nic grounds (see the lower arrow in
Figure 1). In the WoZ experiment,
we used a virtual environment, vir-
tual agents, and real participants. In
the analog environment experiment,
we used a real environment (but still
not as realistic as the Moon or Mars),
virtual agents, and real participants.

The upper arrow in Figure 1 depicts
the approach we describe here. The
first blue balloon depicts a full com-
puter simulation, where the actors
and environment are modeled in the
Brahms work practice modeling tool.7

Computer simulations let us run nu-
merous tests and allow full control
over the environment, agents, and ac-
tors, with low cost. A computer sim-
ulation of individual agent behavior,
however, does not incorporate the
group behavior that is also a product
of the agents’ organization. Hence,
adding an organization model adds
fidelity. We have accomplished this
by extending Brahms with a KAoS
policy model.8,9 Eventually, we can
enhance the realism by testing with
one or more human participants (see
Figure 1). To be able to control as
many context factors as possible, it
helps to simulate the environment
and team members in a scenario. By
simulating team members, we can in-
duce certain off-nominal events, such
as the fainting of a fellow astronaut.

Simulation Platform
Tools for testing human-agent teams
in a mixed-reality environment with
different levels of fidelity are cur-
rently lacking. We developed a sim-
ulation platform in which we model
scenarios and actors by formulating
work practices and policies. This cor-
responds to the idea that agent behav-
ior is not only a product of an agent’s
individual mental attitudes, but also

of the organization the
agent belongs to and the
world state.

To simulate the envi-
ronment, individual agent
behavior, and policies,
we use a combination
of Brahms and KAoS.
Brahms let us model the
agent’s individual behav-
ior, whereas KAoS pro-
vides the regulation from
above. We had to inte-
grate the Brahms and
KAoS frameworks in or-
der to use them together
to simulate the human-

agent teamwork. Brahms agents must
be able to query KAoS for policies,
while still respecting the agents’ au-
tonomy, which requires that the or-
ganizational structure should not
interfere with the autonomy of the
participating agents.10 Agents must
be able to disobey a policy. Because
of the different communication lan-
guages and protocols in Brahms and
KAoS, this requires some translation
method.

Brahms
A work system is a natural set-
ting for those who frequently work
within it. A workplace is where the
work system comes alive, where the
daily work is continuously being per-
formed on the basis of familiar past
performance as well as unanticipated
changes. In other words, work is like
a symphony, well rehearsed, but al-
ways different. It is this “symphony”
we are interested in composing (that
is, designing changes) by using a
modeling and simulation language
that lets us model and predict the im-
pact of a designed change on the cur-
rent system.

Brahms is a multiagent modeling
language for simulating human work
practice that emerges from work

Figure 1. Test space. The gray ovals indicate the test
environments of previous MECA project research, while the blue
ovals depict the method we describe here, from a full computer
simulation to one including human participants.

High

Fi
de

lit
y

Low

Virtual Reality Real

Moon/
Mars

Human
participants3. Computer

simulations
and policy

model

2.

1. Computer
simulated

Wizard of Oz

Analog
environment

IS-25-05-VanD.indd 3 12/08/10 2:46 PM

4	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

A I i n S p a c e

processes in organizations.1 The
same Brahms language can serve to
implement and execute distributed
multiagent systems based on models
of work practice that were first sim-
ulated. Brahms demonstrates how to
integrate a multiagent belief-desire-
intention (BDI) language,11 symbolic
cognitive modeling, traditional busi-
ness process modeling, and situated
cognition theories in a coherent ap-
proach for analysis and design of
organizations and human-centered
systems. Brahms is being devel-
oped and used by the Work Systems

Design and Evaluation group in the
NASA Ames’ Intelligent Systems
division.

The Brahms language supports
various agent concepts such as mental
attitudes, deliberation, adaptation,
social abilities, and reactive- as well
as cognitive-based behavior. The fol-
lowing Brahms language features are
available to model agents:

•	 Mental attributes include attri-
butes, relations, beliefs and facts,
no explicit desires, and frame in-
stantiations (intentions).

•	 Deliberation involves conclud-
ing new beliefs and using thought
frames for reasoning.

•	 Adaptation includes changing be-
liefs, execution activity behavior,
and reasoning based on context.

•	 Social abilities encompass groups
and group inheritance, commu-
nication, and models of the envi-
ronment (objects, geography, and
location).

•	 Reactive and cognitive-based be-
havior involves modeling-activity
behavior versus purely cognitive
behavior, detectables, and work-
frame-activity subsumption.

•	 Communication includes commu-
nication activities and communica-
tive acts.

Brahms is an agent-oriented lan-
guage that lets us easily create agent
groups that execute activities based
on local beliefs. Figure 2 shows a
simple taxonomy of some of the lan-
guage concepts we discuss here.

Figure 3 shows the Brahms agent
architecture. A Brahms virtual ma-
chine (BVM), written in Java, loads
in compiled Brahms and Java agents.
Brahms agents are written in the
Brahms language, whereas Java agents
are written in Java using the Brahms
Java application interface (JAPI).
In simulation mode, the BVM in-
cludes a scheduler that synchronizes

Figure 2. A simple taxonomy of some Brahms language concepts. These concepts form the basic building blocks in any
Brahms project.

GROUPS are composed of
	 AGENTS having
		 BELIEFS and doing
		 ACTIVITIES executed by
			 WORKFRAMES defined by
				 PRECONDITIONS, matching agents beliefs
				 PRIMITIVE ACTIVITIES
				 COMPOSITE ACTIVITIES, decomposing the activity
				 DETECTABLES, including INTERRUPTS, IMPASSES
				 CONSEQUENCES, creating new beliefs and/or facts
		 DELIBERATION implemented with
			 THOUGHTFRAMES defined by
			 PRECONDITIONS, matching agents beliefs

Figure 3. Brahms agent architecture. A Brahms simulation may run Brahms and Java
agents.

World state
Fact F1
Fact Fn
Fact Y

Agent 1 Agent 2
Java

Agent 3 Agent 4

Java agent 5

Scheduler

class Activity2extends
 AbstractExternalActivity
{......}

class Agent5 extends
 AbstractExternalAgent
 {......}

T:0 belief X
T:1 fact Y
....
....
T:N belief Z

...

...

...

...

...

...

...

...

IS-25-05-VanD.indd 4 12/08/10 2:46 PM

september/october 2010	 www.computer.org/intelligent	 5

time, communicates beliefs, and de-
tects facts in the world state.

To allow human-in-the-loop sim-
ulation, we added the capability to
run in “wall-clock” time. This means
that every simulated second takes a
second in real time, which will allow
people to participate in the simula-
tion together with agents.

KAoS HART Framework
The KAoS Human-Agent-Robot
Teamwork (HART) services frame-
work has been adapted to provide
the means for dynamic regulation on
various agent, robotic, Web services,
Grid services, and traditional distrib-
uted computing platforms.8 It also
provides the basic services for distrib-
uted computing, including message
transport and directory services, as
well as more advanced features such
as domain and policy services.

All team members, human and
agent, register with the directory ser-
vice and provide a description of their
capabilities. This lets them query the
directory service to find other team
members and match them based on
capability. The domain and policy
services manage the organizational
structure among the agents, provid-
ing the specification of roles and al-
lowing dynamic team formation and
modification.

Two important requirements for
the KAoS architecture are modularity
and extensibility. These requirements
are supported through a framework
with well-defined interfaces that
can be extended, if necessary, with
the components required to support
application-specific policies. Figure 4
shows the KAoS architecture’s basic
elements; its three layers of function-
ality correspond to three different
policy representations:

•	 The human-interface layer uses a
hypertext-like graphical interface

for policy specification in the form
of natural English sentences. The
vocabulary is automatically pro-
vided from the relevant ontologies,
consisting of reusable core concepts
augmented by application-specific
concepts.

•	 In the policy-management layer,
the Web Ontology Language (OWL,
www.w3.org/TR/owl-features) is
used to encode and manage policy-
related information. The Distrib-
uted Directory Service (DDS) en-
capsulates a set of OWL reasoning
mechanisms.

•	 For the policy-monitoring and
enforcement layer, KAoS auto-
matically “compiles” OWL pol-
icies to an efficient format for
monitoring and enforcement.
This representation provides the
grounding for abstract ontology
terms, connecting them to the in-
stances in the runtime environ-
ment and to other policy-related
information.

OWL semantics do not allow the
expression of attribute constraints,
but the KAoS role-value-map rea-
soner solves this problem.8 During
policy analysis, the OWL reasoner
finds relations between action classes
controlled by policies through sub-
sumption reasoning. Description
logic, however, does not recognize
role-value map semantics. So when
the subsumption reasoner finds a re-
lation between actions and subse-
quently policies, it is still up to the
manager to determine whether poten-
tial instances of role-value maps sepa-
rate the actions and nullify the policy
relation. As policies are distributed to
guards, the reasoner classifies exist-
ing instances (such as the list of ac-
tors) so that relevant information of
other kinds can be sent to the guards
at the same time. As relevant poli-
cies are distributed to guards, they
are compiled into an extremely effi-
cient form that no longer requires an
OWL reasoner. Policy decisions are

Figure 4. KAoS architecture. The human-interface, policy-management, and policy-
monitoring and enforcement layers provide three different policy representations.

Human interface layer (hypertext policies)

Policy management layer (OWL policies)

Enforcement layer (precomputed policies)

Use Use

KPAT KPAT

Policy
manager

Policy
manager

Directory
service

Directory
service

Po
lic

ie
s

in
 O

W
L

Po
lic

ie
s

in
 O

W
L

Partial synchronization

Forward policies and updatesGuard Guard Guard Guard

Controlled
application
component

Controlled
application
component

Controlled
application
component

Controlled
application
component

Di
st

rib
ut

e p
re

co
m

pu
te

d
po

lic
ies

 an
d

up
da

te
s

Distribute precomputed policies and updates

Di
st

rib
ut

e
pr

ec
om

pu
te

d
po

lic
ie

s
an

d
up

da
te

s

IS-25-05-VanD.indd 5 12/08/10 2:46 PM

6	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

A I i n S p a c e

rendered with near-table-
look-up efficiency.

There are two main
types of policies: autho-
rizations and obligations.
The set of permitted ac-
tions is determined by au-
thorization policies that
specify which actions an
actor or set of actors are
permitted (positive autho-
rizations) or not allowed
(negative authorizations)
to perform in a given con-
text. Obligation policies
specify actions that an
actor or set of actors is
required to perform (posi-
tive obligations) or for
which such a requirement
is waived (negative obli-
gations). From these primitive policy
types, we build more complex struc-
tures that form the basis for team
coordination.

Brahms-KAoS Integration
A Brahms agent must able to ask
KAoS for a policy. We enable this
communication using a KAoS-Brahms
bridge, but KAoS and Brahms must
still know the same concepts. Thus,
we developed an ontology builder to
map concepts in Brahms to the corre-
sponding concepts in KAoS.

The bridge lets KAoS and Brahms
communicate even though they use
different languages. Figure 5 give a
high-level overview of how the bridge
works. Brahms sends a request, which
the bridge translates. The bridge then
sends the translated request to KAoS,
which sends a response to the bridge.
Lastly, the bridge translates the re-
sponse and sends it to Brahms.

We can implement the bridge by
either calling a Java activity within
a Brahms agent or creating an ex-
ternal agent entirely implemented in
Java (see Figure 6). We compared two

alternatives to determine which of the
two is the better solution.

To use Java activities in Brahms,
the programmer creates a Java class
with a special method. The BVM in-
vokes this method when the Brahms
agent invokes the activity. Java activi-
ties can be used anywhere that ordi-
nary activities can be used.

When using an external Java agent,
on the other hand, a Java class is cre-
ated that implements a specific in-
terface. This class is then registered
as an external agent in the Brahms
model. When the BVM runs the
model, it instantiates the class and in-
forms it of any events happening in
the simulation. Other agents in the
environment can communicate with
the external agent using the stan-
dard communication activities in the
Brahms language. The main advan-
tages of using activities are that they
do not require a complex communica-
tion protocol and that the activity se-
mantics are similar to object-oriented
method calls, which makes them in-
tuitive to use. However, the system
needs to work in an agent-oriented

environment, which poses
different requirements. Apart
from that, activities can-
not use state to speed up
the process or help in de-
bugging because new in-
stances are created for
every call. Finally, using
activities results in nu-
merous access points to
KAoS. When an agent in-
vokes an activity, that ac-
tivity communicates with
KAoS, which means there
are at least as many ac-
cess points as there are
agents.

This problem does not
occur when an external
agent is used because in
that case all communi-

cation runs through one agent spe-
cially designed as the bridge between
Brahms and KAoS. This solution
has several advantages. Because the
bridge is an agent itself, it is a cleaner
conceptual match with the surround-
ing system. Development is also eas-
ier because we can easily replace an
agent with a stub while working on
other parts of the system. Further-
more, an agent has a persistent state
while the system runs, which lets it
use resources more efficiently. How-
ever, this does come at the price
of a more complex system because
we need to design communication
protocols.

We decided to use a KAoS-Brahms
agent because of the ease of develop-
ing and debugging and the cleaner
conceptual role of the agent.

KAoS-Brahms Agent
An important aspect of KAoS poli-
cies is the ability to authorize actions
based on their properties. To unlock
the full potential of policies, these
properties must therefore be com-
municated to KAoS when a Brahms

Figure 5. Schematic overview of the KAoS-Brahms bridge.
A bidirectional translation is provided between KAoS concepts
and Brahms concepts.

Request

Brahms KAoS

Response

Request

Response

Translate

Bridge

Figure 6. Agents query the KAoS policy library through one
KAoS-Brahms agent. This agent forms the Brahms representative
of KAoS.

KAoS
gateway

KAoS/Brahms
agent

Agents

IS-25-05-VanD.indd 6 12/08/10 2:46 PM

september/october 2010	 www.computer.org/intelligent	 7

agent issues a request to perform an
action. A Brahms agent sends the in-
formation encapsulated in a message
as defined by the Foundation for In-
telligent Physical Agents (FIPA) Agent
Communication Language.12 In this
case, a new Brahms class is created
for each kind of action, containing
the attributes that are relevant to the
action’s authorization.

When an agent wants to obtain
authorization to perform an action,
it constructs a new instance of this
class, sets the values for the relevant
attributes, and sends it to the KAoS
gateway, encapsulated in a FIPA
message. The KAoS gateway trans-
lates the action and its attributes and
passes them on to KAoS. The result
of the policy check is written back to
the object, which the agent can then
use to determine what it should do.

KAoS Gateway
Requests are formulated in the
bridge’s policy library. They are then
sent to KAoS using the KAoS gate-
way, which serves as a translation
gateway to KAoS. Translation is nec-
essary because the Brahms agents
produce Brahms objects, whereas
KAoS does not. Also, KAoS’s re-
sponse to queries will have to be
translated back into Brahms objects
to be useful to the original requesting
agents.

To realize the full potential of
KAoS policies, this translation must
be as complete as possible. This
means that attributes of actions
must be accounted for when trans-
lating from Brahms to KAoS. How-
ever, obligations and restrictions on
attributes of obligated actions must
also be expressible in Brahms objects
when a response is to be sent back to
an agent. This indicates the need for
two subsystems in the KAoS gateway
agent: one to handle translation and
one to handle the communication of

the translated objects, both to KAoS
and Brahms.

Ontology Builder
When the KAoS policy services are
used to enforce policies on a Brahms
model, mapping is needed between
concepts in Brahms and the corre-
sponding concepts KAoS uses. We
can manually construct both this
mapping and the ontology used by
KAoS, but it is a complex task to keep
the model and ontology consistent.
Policies in KAoS are defined using
an OWL-based ontology.13 Although
the OWL standard does not enforce
the way in which an ontology is seri-
alized, using a Resource Description
Framework (RDF) and XML syntax
seems to be common practice. Fortu-
nately, compiled Brahms models are
also specified in XML files. Because
of this, ontologies can be extracted
from Brahms compiled code using
a simple transformation from one
XML file into the other.

The ontology builder constructs
ontologies from a set of Brahms mod-
els for several reasons. First, Brahms
models contain more than just the
concepts relevant for policies; they
also contain code that specifies when
and how work frames and activities
are performed. Generating Brahms
models from an ontology would mean
that code gets lost every time a new
ontology is created. Although this

means we must redefine policies, we
can easily save and restore policies in
KAoS if they are still applicable. Sec-
ond, designing the system this way
let us more easily extend previous
Brahms projects with policies. Third,
modeling agents in Brahms is consid-
erably more explicit than modeling a
formal set of concepts and their re-
lationships, which lets the modeler
think more about the work practice in
the scenario that needs to be modeled
than the actual formal representation.

For these three reasons, the simula-
tion tool generates both the ontology
and the mapping from the Brahms
model. This enables automatic up-
dating of the ontology whenever the
model changes. To achieve this, the
builder must load the model and ex-
tract an ontology defined in OWL.

Applying Brahms-KAoS
for Testing
In a pilot experiment, we used a sce-
nario-based design, the test space,
and the simulation platform. This
pilot shows that with the simula-
tion platform, use cases, require-
ments, and claims can be tested sys-
tematically as formulated in the SCE
method.

Figure 7 illustrates a storyboard
for the use case from the pilot. This
storyboard, which has been used be-
fore with different stakeholders and
representative end users, proved very

Figure 7. Short storyboard of the use-case scenario. When a problem occurs with
Benny’s spacesuit, he faints and must be brought to the habitat, where he receives
medical attention.

IS-25-05-VanD.indd 7 12/08/10 2:46 PM

8	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

A I i n S p a c e

successful for our purposes.4 In our
use-case scenario, Benny has a prob-
lem with his suit. Benny, Brenda, and
their ePartner diagnose the problem
and determine that the heater has
broken. When Benny overheats and
faints, he must be brought back to the
habitat where he can receive medical
attention. On the way to the habitat,
Brenda performs first aid. Brenda’s
ePartner keeps her up to date on im-
portant events. During their ride
to the habitat, the ePartner receives
information about a crater that
blocks their path. The route must be
changed, so Brenda must accept or
deny the alternative route.

The framework consists of the sim-
ulation platform extended with an in-
terface for the human to interact with
(see Figure 8). In addition to building
the interface, we must change the sim-
ulation platform so that the simulation
can run in real time. Brahms does not
support this by default. We chose to
model a separate agent that manages
the time because this will help cleanly
separate the code dealing with time
from the Brahms model and it requires
virtually no changes in the model.

At two moments in this scenario, the
human or the machine must choose
whether to obey a policy. For in-
stance, Brenda can choose to take the

diverted route or choose to take the
original route (which in this case will
cause a crash in the crater). This
scenario shows that the actors can
ignore policies, along with the re-
sulting consequence. The simulation
platform enhanced the test’s fidelity.

In the future, we want to test this
scenario with human participants

and extend it with a virtual reality en-
vironment to add more realism. The
use of virtual reality for training and
testing has proven successful in other
domains. For instance, we have used
the virtual reality environment Unreal
Tournament (from Epic Games) to
test mobile decision support for first
responders.14 Because the platform is
flexible, tests can be performed with
one or multiple users, with a real or
simulated rover, and so forth.

The scenario we discussed here is
just one use case, but we have a li-
brary of use cases in the MECA proj-
ect that can be deployed for testing.
The proof of concept simulation is
promising, and we intend to perform
more tests in the future. We believe
the method and simulation platform
are particularly useful for larger groups
and is a necessary test tool before set-
ting foot on Mars.

Acknowledgments
MECA (www.crewassistant.com) is a devel
opment funded by the European Space
Agency (contract number 21947/08/NL/ST).

References
1.	J.M. Bradshaw, P. Feltovich, and

M. Johnson, “Human-Agent Interac-

tion,” Handbook of Human-Machine

Interaction, G.A. Boy, ed., Ashgate

Publishing, to be published in 2010.

2.	R. Doyle et al., “Progress on AI, Robot-

ics, and Automation in Space: A Report

from i-SAIRAS 08,” IEEE Intelligent

Systems, vol. 24, no. 1, 2009, pp. 78–83.

3.	D. Schreckenghost et al., “Intelligent

Control of Life Support for Space

Missions,” IEEE Intelligent Systems,

vol. 17, no. 5, 2002, pp. 24–31.

4.	M.A. Neerincx et al., “The Mission

Execution Crew Assistant: Improving

Human-Machine Team Resilience for

Long Duration Missions,” Proc.

59th Int’l Astronautical Congress

(IAC 2008), 2008.

5.	M.A. Neerincx and J. Lindenberg,

“Situated Cognitive Engineering for

Complex Task Environments,” Natu-

ralistic Decision Making and Macro-

cognition, J.M.C. Schraagen et al., eds.,

Ashgate Publishing, 2008, pp. 373–390.

6.	N.J.J.M. Smets et al., “Game-Based

versus Storyboard-Based Evaluations

of Crew Support Prototypes for Long

Duration Missions,” Acta Astronautica,

vol. 66, nos. 5–6, 2009, pp. 810–820.

7.	M. Sierhuis et al., “Brahms: An Agent-

Oriented Language for Work Practice

Simulation and Multi-agent Systems

Development,” Multi-agent Program-

ming, Springer, 2009.

8.	A. Uszok et al., “New Developments in

Ontology-Based Policy Management:

Increasing the Practicality and Compre-

hensiveness of KAoS,” Proc. 2008 IEEE

Workshop Policies for Distributed

Systems and Networks (Policy 2008),

IEEE Press, 2008, pp. 145–152.

9.	J. van Diggelen et al., “Policy-Based

Design of Human-Machine Collabora-

tion in Manned Space Missions,” Proc.

Figure 8. Human-in-the-loop interface. Messages are on the left, and procedure
steps and a map with the actors are on the right.

IS-25-05-VanD.indd 8 12/08/10 2:46 PM

september/october 2010	 www.computer.org/intelligent	 9

3rd IEEE Int’l Conf. Space Mission

Challenges for Information Technology

(SMC-IT 09), IEEE CS Press, 2009,

pp. 376–383.

10.	V. Dignum, “A Model for Organiza-

tional Interaction: Based on Agents,

Founded in Logic,” doctoral disserta-

tion, Institute of Computing Sciences,

Utrecht Univ., 2004.

11.	M.E. Bratman, Faces of Intention:

Selected Essays on Intention and

Agency, Cambridge Univ. Press, 1999.

12.	‌FIPA Communicative Act Library

Specification, Foundation for Intelligent

Physical Agents, 2002.

13.	T.R. Gruber, “A Translation Approach

to Portable Ontology Specifications,”

Knowledge Acquisition, vol. 5, no. 2,

1993, pp. 199–220; http://dx.doi.org/

10.1006/knac.1993.1008.

14.	N.J.J.M. Smets et al., “Effects of

Mobile Map Orientation and Tactile

Feedback on Navigation Speed and

Situation Awareness,” Proc. 10th Int’l

Conf. Human Computer Interaction

with Mobile Devices and Services

(MobileHCI 08), ACM Press, 2008,

pp. 73–80.

 T h e A u t h o r s
Nanja J.J.M. Smets is a research member of the Cognitive Systems Engineering group
at TNO Human Factors. Her research interests include cognitive engineering, human-
agent interaction, and astronaut-support systems. Smets has an MS in artificial intelli-
gence and man-machine interaction from Vrije Universiteit Amsterdam. Contact her at
nanja.smets@tno.nl.

Jurriaan van Diggelen is a research member of the Cognitive Systems Engineering group
at TNO Human Factors. His research interests include cognitive engineering, human-
agent teamwork, computational policies. Van Diggelen has a PhD in Artificial Intelli-
gence from Utrecht University. Contact him at jurriaan.vandiggelen@tno.nl.

Jeffrey M. Bradshaw is a Senior Research Scientist at the Florida Institute for Human
and Machine Cognition (IHMC). His research interests include policy-based coordina-
tion of joint activity in humans and machines, Semantic Web technologies, adjustable
autonomy. Bradshaw has a PhD in Cognitive Science, University of Washington. Contact
him at jbradshaw@ihmc.us.

Mark A. Neerincx is a Senior Research scientist at TNO and Professor at Technical Uni-
versity of Delft. His research interests include cognitive engineering, electronic Partners,
and cognitive taskload modeling for adaptive interfaces. Neerincx has a PhD in psychol-
ogy from the University of Groningen. Contact him at mark.neerincx@tno.nl.

Catholijn M. Jonker is a full professor at Technical University of Delft. Her research
interests include multi-agent systems, human-machine interaction, decision support sys-
tems. Jonker has a PhD in Artificial Intelligence from Utrecht University. Contact him at
c.m.jonker@tudelft.nl.

Lennard J.V. de Rijk is a Master Student at Technical University of Delft. His research
interests include Agent-based modelling. De Rijk has a bachelor degree in computer
science from Technical University of Delft. Contact him at L.J.V.deRijk@student.
tudelft.nl.

Pieter A.M. Senster is a Master Student at Technical University of Delft. His research in-
terests include Agent-based modeling. Senster has a bachelor degree in computer science
from Technical University of Delft. Contact him at pieter@pietersenster.nl.

Ot ten Thije is a Master Student at Technical University of Delft. His research interests
include Agent-based modeling. Ten Thije has a bachelor degree in computer science from
Technical University of Delft. Contact him at J.O.A.tenThije@student.TUDelft.nl.

Maarten Sierhuis is a Senior research scientist at the NASA Ames Research Center. His
research interests include modeling and simulation of knowledge, organizations, human
behavior and work practices. Sierhuis has a PhD in Social Science Informatics from Uni-
versity of Amsterdam. Contact him at maarten.sierhuis-1@nasa.gov.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

IS-25-05-VanD.indd 9 12/08/10 2:46 PM

