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Abstract 
 

Personal construct theory provides both a plausible theoretical foundation for 
knowledge acquisition and a practical approach to modeling. Yet, only a fraction of 
the ideas latent in this theory have been tapped. Recently, several researchers have 
been taking a second look at the theory, to discover new ways that it can shed light 
on the foundations and practice of knowledge acquisition. These efforts have led to 
the development of three “second-generation” constructivist knowledge acquisition 
systems: DDUCKS, ICONKAT, and KSSn/KRS. These tools extend repertory grid 
techniques in various ways and integrate them with tools springing from 
complementary perspectives. New understandings of relationships between personal 
construct theory, assimilation theory, logic, semantic networks, and decision analysis 
have formed the underpinnings of these systems. Theoretical progress has fostered 
practical development in system architecture, analysis and induction techniques, and 
group use of knowledge acquisition tools. 



 

 
 
1. Introduction: Personal Construct Theory and Knowledge Acquisition 
Personal construct theory (see Refs. 1-10) has provided both a plausible theoretical foundation and an 
effective practical approach to knowledge acquisition in a variety of settings. In particular, efforts to 
apply repertory grid techniques to knowledge acquisition have met with a great deal of success. In 
fact, personal construct theory and repertory grids have become so widely known and used that people 
often equate them. Yet despite the high level of research activity, only a fraction of the ideas latent in 
personal construct theory have been tapped. Recently, several researchers have been taking a second 
look at the theory, to discover new ways that it can shed light on the foundations and practice of 
knowledge acquisition. These efforts have led to the development of a new generation of personal-
construct-based knowledge acquisition tools. While not discarding repertory grid techniques and 
representations, these tools extend them in various ways and integrate them with tools springing from 
other complementary perspectives. 
 
In this paper we review past contributions of personal construct theory and summarize new directions. 
Section one discusses personal construct theory and repertory grids. Section two discusses new 
understandings of relationships with complementary theoretical perspectives underpinning 
constructivist approaches to knowledge acquisition. Section three examines three “second generation” 
knowledge acquisition tools that have benefited from these theoretical developments. 
 
1.1. Constructive Alternativism and the Foundational Role of Distinctions 
Personal construct theory is based on the research of George Kelly.1-3 The theory’s fundamental 
postulate and its eleven corollaries were derived from a single epistemological premise, that of 
constructive alternativism. According to this principle, ‘reality’ does not reveal itself to us directly, but 
rather is subject to as many different constructions as we are able to invent.4-7 Thus, any event is open 
to a variety of different interpretations. This does not imply, however, that one interpretation of that 
event is as good as any other. On the contrary, different ways of construing the same event can be 
evaluated in term of their relative predictive utility.8 That is, some interpretations of an event may 
prove more useful than others for anticipating similar events in the future. 
 
1.2. Personal Constructs 
Kelly defined his notion of personal construct as follows (Ref. 1, p.  61):  
 

In its minimum context a construct is a way in which at least two elements are 
similar and contrast with a third. 



 

 
 

 
Thus, a construct simultaneously differentiates and integrates. To construe is both to abstract from past 
events, and to provide a reference axis for anticipating future events based on that abstraction. The 
process of construal thus lays the ground for all subsequent logical and mathematical reasoning: (Ref. 
1, p. 278):  
 

The statistics of probability are based upon the concept of replicated events. And, 
of course, they are also contrived to measure the predictability of further 
replications of the events. The two factors from which predictions are made are 
the number of replications already observed and the amount of similarity which 
can be abstracted among the replications. The latter factor involves some 
complicated logical problems—for example, representative sampling—and, in 
practice, it is the one which usually makes predictions go awry. Since the 
abstractive judgment of what it is that has been replicated is the basis for 
measuring the amount of similarity, we find that the concept-formation task which 
precedes the statistical manipulation is basic to any conclusions one reaches by 
mathematical logic. 
 

Though few would disagree with Kelly’s observation, in practice designers of knowledge acquisition 
tools have given little attention to supporting the preliminary conceptual aspects of modeling that 
Kelly identifies as so crucial. 
 
1.3. Persons-as-Scientists 
Kelly’s theory provides a rich characterization of the efforts of individuals to actively anticipate and 
control their environment. He draws explicit parallels between the processes that guide scientific 
research and those involved in everyday activities. His notion of personal scientist assumes that all 
people actively seek to predict and control events by forming relevant hypotheses, and then testing 
them against their experience.10 In Kelly’s own words (Ref. 1, p. 43), “the aspirations of the scientist 
are essentially the aspirations of all men.” As Einstein put it (Ref. 11, p. 763), “The whole of science is 
nothing more than a refinement of everyday thinking.” 
 
In Kelly’s view, humans model their environment and scientists model humans through a like process 
of simulation (Ref. 12, pp. 225-226):  
 



 

 
 

I think truth can be approached by simulation and by simulation only… Man gets 
at the truth of things… by erecting constructs to simulate it the best he can… 
[And scientists] devise machines to simulate—not man directly—but theories 
about man… the theories, in turn, are constructed to simulate the human processes 
they are supposed to explain. But the simulation does not stop there. The persons 
themselves are simulators. They attempt to simulate each other—too much, some 
say. They simulate their parents, their gods, a presumed rational way of life, and 
the expectations of others. In fact, a lot of people even make a big to-do about 
simulating themselves. This is known as ‘trying to be yourself’ and is often 
regarded as quite an accomplishment. Sometimes people simulate machines. This 
is sometimes called ‘being objective.’ [One scientist] has even programmed his 
people to behave like computers. Some psychologists undoubtedly will take this 
to mean that he has succeeded in getting people to behave psychologically. 
 

In Kelly’s view, a major goal of both individuals and social systems is anticipation. We simulate to 
improve the ‘accuracy’ of our anticipation of aspects of the future that are important to us. Action is a 
form of active anticipation that seeks to make desirable outcomes more likely. 
 
1.4. Fundamental Postulate and Corollaries of the Theory 
Kelly’s fundamental postulate asserts that (Ref. 1, p. 46), “A person’s processes are psychologically 
channelized by the ways in which he anticipates events.” Hence, for Kelly, all our representational 
processes are essentially anticipatory.4 He elaborated the logical implications of this proposition in 
terms of eleven corollaries, five of which are directly relevant to this paper. 
 
Dichotomy Corollary: “A person’s construction system is composed of a finite number of 
dichotomous constructs” (Ref. 1, p. 59). Kelly believed that the dichotomous structure of personal 
constructs is an essential feature of the way in which people organize information. For example, if a 
person simultaneously perceived an event to be equally pleasant and unpleasant in the same respect, 
then this distinction would be meaningless for that event. 
 
Construction Corollary: “A person anticipates events by construing their replications” (Ref. 1, p. 50). 
Each person employs constructs to forecast events, and later to evaluate the predictive utility of those 
forecasts. Although the same event obviously never recurs, we use our personal constructs to organize 
perceived similarities and differences among events into coherent patterns or ‘schemata.’ Using these 



 

 
 
schemata as ‘templates’ we detect recurrent themes in our experience over time and feed these 
representations forward as expectations about the future (cf. Ref. 13). 
 
Experience Corollary: “A person’s construction system varies as he successively construes the 
replication of events” (Ref. 1, p. 72). With the passage of time, the perception of new events 
constitutes an ongoing validation process that serves to confirm or disconfirm some of an individual’s 
anticipations. As a result, a person’s constructs undergo continuous, progressive change. Kelly 
assumed that these changes in personal constructs are generally the result of predictive failures (cf. 
Ref. 14). As noted by Ford (Ref. 13, p. 190):  
 

We humans frequently anticipate the occurrence or non-occurrence of future 
events based on our willingness to project observed uniformities into the future. 
Thus, we continually glide from the past into the future with our previous 
experience preceding us—illuminating and organizing the manner in which 
subsequent events will be manifest to us. 

 
The process through which people continuously anticipate events and test the efficacy of their 
constructions is termed the experience cycle (cf. Ref. 15). Kelly believed that this cycle of anticipation, 
investment, encounter, confirmation/disconfirmation and constructive revision represents a useful 
heuristic for conceptualizing human experience. 
 
Range Corollary: “Each construct is convenient for the anticipation of a finite range of events only” 
(Ref. 1, p. 68). Each of a person’s constructs has a range of convenience, which comprises “all those 
things to which the user would find its application useful.” Accordingly, the range of convenience of a 
construct defines its extension in terms of a single aspect of a limited domain of events.8 Not only 
individual constructs, but also, by implication, systems and subsystems of interrelated constructs have 
specific ranges of convenience. This suggests that some degree of functional differentiation among 
subsystems of constructs can enhance its overall range of convenience with respect to the variety of 
events that can be accommodated within its framework.16 
 
Organization Corollary: “Each person characteristically evolves, for his own convenience in 
anticipating events, a construction system embracing ordinal relationships between constructs” (Ref. 1, 
p. 56). Constructs usually are deployed in conjunction with related constructs in interpreting and 
predicting events. Indeed, a necessary condition for organized thought is some degree of overlap 



 

 
 
between the constructs’ ranges of convenience.17 It is this overlap, or intersection, between the 
constructs’ extensions that enables an individual to formulate “hypotheses.” That is, in interpreting an 
event we essentially categorize it in terms of one or more constructs, and then by reviewing our 
personal systems of related constructs, we can derive predictive inferences from that initial 
categorization. For example, suppose that an individual’s subordinate construct ‘polite/rude’ was 
subsumed by a superordinate construct ‘considerate/inconsiderate.’ This individual would expect 
considerate behavior from people who are polite. It is this predictive function of a person’s construct 
system that provides the logical rationale for the Kellyan view that human beings are characterized by 
an anticipatory stance. 
 
1.5. Repertory Grids 
Kelly’s Role Construct Repertory Grid Test1 is essentially a method of eliciting constructs and 
analyzing relationships between them. It differs from conventional sorting tests, such as that devised 
by Vygotsky,18 in that relationships between the categories are evaluated rather than the accuracy of 
the sorting. As Osgood, Suci, and Tannenbaum point out, Kelly’s technique closely resembles 
Semantic Differential procedure.19 In fact, some contemporary repertory grids are almost identical in 
form to Osgood’s own instrument. 
 
Elements (alternative events, states, or entities) and constructs (dimensions of similarity and difference 
between elements) are central to knowledge representation in repertory grids. The most basic form of 
repertory grid is a rectangular matrix with elements as columns and constructs as rows (see Figure 1). 
Each row-column intersect in the grid contains a rating showing how a person applied a given 
construct to a particular element. Kelly suggested several techniques for eliciting constructs from 
individuals,20,21 however, a standard list of constructs relevant to a given context can be provided to 
respondents.22,23 
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Figure 1. Example of a repertory grid for diagnosis of heart wall motion abnormalities  
(adapted from figure in Ref. 24). 

 
 
Constructs can be elicited by Kelly’s method of triads,1 that is, presenting elements three at a time and 
asking how any two of them are similar to each other and different from the third. For example, 
consider a physician who is diagnosing heart wall motion abnormalities (severe-lv-dysfunction, 
abnorm-fx/valve-disease, etc.). We might begin by asking in what way are two heart problems alike 
and thereby different from another one? The physician could reply that a normal heart condition and 
an abnormal-fx cardiomypathy condition are alike in that they exhibit no blue fingers, whereas if 
abnormal-fx/ischemia is the problem, a blue finger appears. Blue finger/no blue fingers are the poles of 
the construct. 
 
There are practical, as well as theoretical, considerations that underlie the use of triads of elements in 
interviewing experts. Because people are so good at listing relevant distinctions, it is tempting to let 
them add constructs to the grid at will rather than using a structured interview process. While it is true 
that most experts can readily generate a set of terms to describe their domain, our experience is that 
unstructured methods typically produce less interesting terms than triad methods. Since triadic 
elicitation frames the task as one of distinguishing among elements, the expert generates a minimal set 
of discriminating dimensions, rather than a larger set of descriptive ones that may or may not be of 
practical use. In Ford et al.,24 for example, the expert did not verbalize the key diagnostic factor (blue 
finger in Figure 1) until he completed a repertory grid. Experts often find using this tool leads to 



 

 
 
discovery rather than simple documentation of known facts and relationships. This is particularly true 
for experts who are on the leading edge of their profession. 
 
With respect to generality, distinctions based on the presentation of two elements tend to be less 
robust. In Kelly’s terms, they are relatively impermeable, that is, they are more specific to the two 
elements being considered and less likely to be applicable to new elements introduced later. Experts 
produce more permeable constructs when they consider three or more elements at a time. 
 
Researchers have developed several forms of grids,20,25-27 including implication grids, resistance-to-
change grids, bipolar implication grids, dependency grids, exchange grids, and mode grids among 
others. They have also devised a variety of grid formats in which people, objects, events, situations, or 
other kinds of elements, are either categorized, rated, or rank-ordered on a set of constructs. Several 
analysis procedures have also been developed. We discuss some of these techniques in Section 3.2. 
 
In addition to eliciting and analyzing knowledge, repertory grid techniques have other features that are 
useful in the knowledge acquisition process. First, they apply to a variety of problems. For instance, 
repertory grids can be viewed as a component of a database in entity-attribute form28 with elements as 
entities, constructs as attributes, and allocations of elements to locations on construct dimensions as 
values. Secondly, representing knowledge in repertory grids can simplify the creation of interfaces to 
databases and spreadsheets.28-31 Another advantage of grids is that they make it easy to inspect and 
analyze the organization and logic of expert knowledge. The spreadsheet-like visual metaphor 
amplifies the expert’s ability to recognize and offer distinctions between the elements.32 Recognition 
and completion of patterns in the data are facilitated by the structure and relative compactness of the 
matrix representation as compared to rules. Furthermore, representation by grids facilitates testing for 
ambiguity, redundancy, and incompleteness.33 
 
 
2. Recent Theoretical Developments 
Before our discussion of specific tools in section three, it is important to understand something of the 
background of their evolution. Each has been influenced by the particular theoretical and practical 
interests of their developers. Furthermore, because of extensive collaboration, and other professional 
interaction, a great deal of cross-fertilization across research groups has taken place. For example, 
work on ICONKAT at the University of West Florida has benefited from the collaboration of Novak, a 
major contributor to assimilation theory. Concept maps, originally developed by Novak,34 and applied 



 

 
 
to educational settings, are a mediating representation that have been used successfully by Ford, 
Adams-Webber, and their colleagues24 in several aspects of the knowledge acquisition process (see 
Section 3.1.2). Both the theory and the technique are constructivist. We discuss assimilation theory and 
concept maps in Section 2.1. 
 
A further set of developments has served to clarify the underlying rationale of repertory methods. 
Aquinas35 was a knowledge acquisition tool that provided an explicit hierarchical representation for 
elements and constructs. We briefly describe the approach in Section 2.2. At the University of Calgary, 
Gaines and Shaw36-39 are working to produce a theoretical foundation for tools that organize 
constructs into hierarchies. They have defined an intensional logic of distinctions that is compatible 
with the KL-ONE family of semantic network representations.40,41 In addition, the research group 
associated with the University of West Florida32,42,43 have developed a logic of confirmation that 
incorporates the basic tenets of personal construct psychology directly into the logic as grounds for the 
determination of relevance, thus strengthening the logic and extending personal construct theory. In 
this approach, the degree of confirmation is characterized by epistemic probabilities arrived at by 
measuring the overlap (partial entailment) between the constructs’ extensions represented as binary bit 
strings. We discuss these developments in Section 2.3. 
 
Finally, at The Boeing Company, Bradshaw and Boose44 have combined repertory grids with decision-
analytic representations called influence diagrams and possibility tables.30,45 The new understandings 
resulting from work combining repertory grids and influence diagrams provide a basis for principled 
reasoning under uncertainty and explicit representation of preferences for problems involving 
significant risk, high stakes, or complex tradeoffs. Work combining repertory grids and possibility 
tables extends constructivist techniques to exploratory design and configuration problems.46 We 
discuss influence diagrams and possibility tables in Section 2.4. 
 
2.1. Assimilation Theory and Concept Maps 
Ausubel’s assimilation theory is a cognitive learning theory that has been widely applied to 
education.47,48 Like Kelly’s personal construct theory, it is based on a constructivist model of human 
cognitive processes. Specifically, it describes how concepts are acquired and organized within a 
learner’s cognitive structure. 
 
Ausubel argues that learning is synonymous with a change in the meaning of experience. His 
fundamental premise seems deceptively simple (Ref. 48, p. 159): 



 

 
 
 

Meaningful learning results when new information is acquired by deliberate effort 
on the part of the learner to link the new information with relevant, preexisting 
concepts or propositions in the learner’s own cognitive structure. 
 

In short, meaningful learning involves the assimilation of new concepts and propositions into existing 
cognitive structures. In Ausubel’s model, cognitive structure can be described as a hierarchically 
organized collection of concepts representing one’s knowledge and experience.34 Concepts are 
perceived regularities in events or objects, designated by a label.24 Assimilation theory stresses that 
meaningful learning requires that the learner’s cognitive structure contain anchoring concepts to which 
new material can be related or linked. For this reason, Ausubel argued that “the most important single 
factor influencing learning is what the learner already knows. Ascertain this and teach him 
accordingly.” 
 
The concept map is assimilation theory’s major methodological tool for ascertaining what is already 
known. In educational settings, concept mapping techniques have aided people of every age to 
examine many fields of knowledge. Much of the assimilation theoretic research to date has involved 
and exploited concept mapping.49 In addition, concept maps are of increasing interest to those engaged 
in the process of knowledge acquisition for the construction of knowledge-based systems.24,50 
Essentially, concept maps provide context-dependent representations of a specific domain of 
knowledge within a set of concepts. They are constructed so that the interrelationships among the 
included concepts are evident. In fact, concept maps have been shown to help students “learn how to 
learn” by making explicit their personally constructed knowledge and providing a structure for linking 
in new information. As a mediating representation, concept maps offer a flexible framework for 
eliciting, representing, and communicating the emerging domain model. In this way, they are well 
suited to the view of knowledge acquisition as a constructive modeling process in which the 
knowledge engineer and domain expert collaboratively build a domain model. 
 
Concept maps structure a set of concepts into a hierarchical framework. More general, inclusive 
concepts are found at the highest levels, with progressively more specific and less inclusive concepts 
arranged below them. In this way, concept maps display Ausubel’s notion of subsumption, namely that 
new information is often relative to and subsumable under more inclusive concepts. All concepts at 
any given level in the hierarchy will tend to have a similar degree of generality. Figure 2 shows a 



 

 
 
portion of a concept map produced by an expert in nuclear cardiology (by convention links run top-to-
bottom unless marked with an arrowhead). 
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Figure 2. A portion of a concept map from the domain of nuclear cardiology  

(adapted from figure in Ref. 24). 
 
 

Relationships between concepts in a map represent propositions. Propositions form semantic units by 
linking together two or more concepts. In its most rudimentary form, a concept map contains just two 
concepts connected by a linking word to form a proposition. For example, “John is tall” would 
represent a simple map forming a valid proposition about the concepts “John” and “tall”. A concept 
acquires additional meaning as more propositions include it. Thus, “John is tall”, “John is a person”, 
“John eats” and so on, all expand the meaning of the concept “John”. In this sense, we can think of 
concept maps as representing meaning in a framework of embedded propositions. Much of the 



 

 
 
expressive power of concept maps comes from the fact that the user is free to employ an unlimited set 
of linking words to show how meanings have been developed. When concepts and linking words are 
carefully chosen, these maps are powerful tools for representing and communicating nuances of 
meaning. 
 
In the ICONKAT system, concept maps are an important mediating representation used to provide a 
hierarchically ordered, conceptual overview of the domain model arising from the collaborative efforts 
of the expert and knowledge engineer. The concept maps provide “knowledge landscapes” (essentially 
topographical maps) of the domain that inform the knowledge engineer about the potential and 
appropriate use of other methods, such as repertory grids. For example, they may indicate where there 
is enough knowledge (at given level abstraction) to warrant the use of a repertory grid. More 
importantly, in the ICONKAT environment, concept maps comprise the organizational structure for 
entire domain model. It is into this semantic structure that other mediating representations (e.g., 
repertory grids, video, text, etc.) can be linked. Finally, the ICONKAT approach to explanation relies 
on the aforementioned organizational structure of the domain model represented as a hierarchical 
collection of concept maps. In ICONKAT, users construct their own explanations while navigating 
their way through the linkages among clusters of related mediating representations constituting the 
model. 
 
Although ICONKAT provides the most extensive set of tools to assist with concept mapping, 
KSSn/KRS and DDUCKS also have benefited from the use of concept-map-like structures. 
 
2.2. Hierarchical Knowledge and Repertory Grids 
The need to represent hierarchies of elements and constructs at varying levels was recognized by 
Boose51,52 in his work on the Expertise Transfer System (ETS). For instance, one of the first experts 
interviewed tried to build a jet engine diagnostic aid. Parts and systems were listed as potential 
elements (problem areas), and diagnostic symptoms were generated through triadic comparison. 
Unfortunately, elements such as “spark plug” and “electrical system” both appeared in the same grid. 
This caused difficulties when using grid elicitation techniques and some analysis tools. Even in cases 
where grid information was at a similar level of abstraction, there was a limit to how much information 
could be comfortably represented in a single rating grid. One application included a 38-by-35 grid, but 
it was hard for the expert to manage and comprehend that much information at once. A method was 
needed to decompose large grids into manageable, related subgrids. 
 



 

 
 
In later versions, ETS used a laddering technique developed by Hinkle26 that asked “how” and “why” 
questions to elicit constructs at different levels of abstraction. Then, in their work on Aquinas, Boose 
and Bradshaw35,53 developed a scheme in which the underlying representation of grids was no longer a 
two-dimensional matrix, but rather a network of linked frames in a multidimensional space. A 
particular frame represented information about a concept at the intersection of a particular case 
(problem area), an expert (or other knowledge source) who knew something about that case, an 
element that represented an alternative that was a possible solution for the problem, and a particular 
distinction that was relevant to the selection of the alternative. Experts used a “map view” to navigate 
through the knowledge base (Figure 3). By selecting combinations of nodes in the case, expert, 
element, and construct hierarchies, they could specify a portion of the knowledge base to be displayed 
as a repertory grid. Structural changes made in the network views were immediately reflected in the 
grids, and vice versa. Various dialogues, in conjunction with laddering and statistical analysis 
techniques, helped experts decide how to decompose and structure the hierarchies. 
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Figure 3. Experts select nodes from each hierarchy to show portions of the knowledge base in grid 
format  (adapted from figure in Ref. 35). 

 
 

Gaines and Shaw’s54 intensional logic provide a theoretical foundation for generalizing and refining 
some of the ideas previously demonstrated in Aquinas. As described in the next section, their 
theoretical framework also provides a conceptual bridge between constructivist knowledge acquisition 



 

 
 
tools and the semantic network representations for which relationships between concepts are a major 
focus. 
 
2.3. Recent Developments in the Logic of Personal Construct Theory and Repertory Grids 
An important set of studies has helped to clarify the logical rational underlying some constructivist 
knowledge acquisition tools. Gaines and Shaw have defined an intensional logic of distinctions54 that 
is compatible with the KL-ONE family of semantic network representations.40,41 We describe these 
developments in Section 2.3.1. In a related vein, Ford and colleagues32,42,43 have proposed a theory of 
confirmation that incorporates the basic tenets of personal construct psychology directly into the logic 
as a basis for the determination of relevance, thus strengthening the logic and extending personal 
construct theory. Section 2.3.2 gives a brief summary of these developments. 
 
2.3.1. Intensional Logic and Semantic Networks 
As a foundation for KSSn/KRS, Gaines and Shaw54 show how distinctions may interrelate. They take 
the relations of subsumption and disjunction to be minimally sufficient to define an intensional logic of 
distinctions, from which more complex relations may be derived. Subsumption between computational 
concepts corresponds to the “is-a” relation common in semantic network representations, while 
disjunction corresponds to the definition of disjoint concepts (Ref. 54, p. 9):  
 

A concept is defined to be that mental entity imputed to a distinction making 
agent as enabling it to make a particular distinction....A construct is defined 
formally to be a triple of two disjoint distinctions mutually subsumed by a third… 
and psychologically as the triple of concepts assumed to underlie the distinctions. 
 

Figure 4(A) illustrates how the notion of similarity is captured through the shared concept age, while 
the notion of contrast is captured through the disjunctive arc separating the subsumed concepts young 
and old. The minimal subsuming concept, age, illustrates the idea that a construct is convenient for 
anticipating a finite range of events. Since concepts in the graph are nodes, and constructs are arcs, 
Gaines and Shaw conclude that concept and construct are graph-theoretically dual relations. 
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Figure 4. The structure of a construct (A); a construct with three alternative values (B); and two 

constructs in an ordinal relationship (C)  (adapted from figure in Ref. 54). 
 
 
Figure 4(B) shows a triple of disjoint concepts (young—middle-aged—old) that could be seen as 
alternative values along an age dimension. The possibility of putting events along numeric scales may 
be represented by extending this structure in various ways. Ordinal relations between constructs may 
be derived from the ordinal relation of subsumption, as shown in Figure 4(C). Here, the construct 
characterized by the triple of goodness: good–bad subsumes the construct interestingness: fun–boring. 
 
Applying this conceptual framework to events requires a description of how the distinctions relate to 
the things distinguished or represented (i.e., elements). Figure 5 represents Ferio and Jules as elements 
(or individuals) placed at particular points. Individuals are necessarily leaf nodes in the graph 
representation. We can characterize the repertory grid as a matrix of concepts, individuals, and 
constraints. 
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Figure 5. Ferio and Jules as elements (individuals) in relation to the constructs of age and wealth 

(adapted from figure in Ref. 54). 
 
 



 

 
 
Gaines and Shaw’s work has laid a foundation for implementing constructivist representations that 
correspond to a formal semantics for semantic nets. This will enable a better exchange of ideas 
between researchers. Work in this area has also produced a “visual language” for semantic networks. 
We discuss the implementation of this language in KSSn/KRS in Section 3.1.3 below. 
 
2.3.2. The Logic of Confirmation and Personal Construct Theory 
The process of deriving construct relationships from repertory grid data relates to the problem of 
induction—the production of universal generalizations based on a finite number of evidences. The 
inductive probability of an argument depends on the strength of the evidence that the premises provide 
for the conclusion. Closely related to efforts aimed at developing an adequate logic of induction, are 
those focused on elaborating what is known as the logic of confirmation. The central problem in the 
study of the logic of confirmation has long been the problem of relevance. In this context, a useful 
theory of relevance is one that plausibly elucidates the method implicit in judgments of confirmation 
as performed by actual humans—not by some imaginary fully rational being. The shifting relevance of 
aspects of ordinary situations would be cause for gloom in AI and cognitive science, were it not for the 
successful human exemplar. 
 
Consider the paradox of the raven.55 Most observers find it disturbing that the existence of a white 
handkerchief can be formally shown to confirm the hypothesis “all ravens are black.” This result 
offends our intuitions which hold the existence of a white handkerchief irrelevant to a hypothesis about 
ravens. Ford and Adams-Webber32,43 have elaborated a constructivist approach to classificatory 
confirmation that justifies this natural intuition. Despite their formal equivalence in terms of symbolic 
logic, the proposition that “all ravens are black” and “all non-black things are non-ravens” are 
pragmatically very different. That is, they are not confirmed and disconfirmed by the same evidence. 
 
In an attempt to address the paradox of the raven, Von Wright56 noted that generalizations have an 
associated range of relevance, and consequently, only things within a generalization’s range of 
relevance may constitute confirming or disconfirming evidence. All other things (i.e., things outside 
the range of relevance) are irrelevant. Furthermore, when a generalization’s range of relevance is not 
specified (which is typically the case), it is taken to be the “natural range of relevance,” meaning “the 
class of things that fall under the antecedent term.”56 However, this seems a little like question 
begging; a serious practical problem remains, how is this “natural range of relevance” to be 
operationally defined? 
 



 

 
 
The class of items deemed as falling under the antecedent term will vary from person to person and 
over time. From a Kellyan point of view, the problem of epistemic confirmation (i.e., non-
demonstrative inference in the service of individual fixation of belief) is at the most primitive level, 
fundamentally psychological in nature, and will not submit to a purely syntactic (i.e., a priori analytic) 
approach. Ford and Adams-Webber have suggested that Kelly’s range corollary (discussed in Section 
1.4) can lend Von Wright’s theoretical notion of relevance a basis for realization.32,42,43 According to 
personal construct theory, hypotheses are based on the overlap or intersection of the constructs’ ranges 
of convenience. Moreover, the repertory grid provides a method of operationally defining Von 
Wright’s range of relevance for a given hypothesis in the universe defined by the grid elements. 
Specifically, Ford and Adams-Webber have elaborated a theory of non-quantitative (or classificatory) 
confirmation32,42,43 that incorporates the fundamental tenets of personal construct psychology directly 
into the logic as a foundation for the determination of relevance, thus strengthening the logic, and 
extending personal construct psychology. This work on a classificatory theory of confirmation 
provided the foundation for the subsequent development of a quantitative logic of confirmation 
(discussed below) consistent with personal construct psychology. 
 
Logic is traditionally presented as if there is a great conceptual chasm between considerations of 
deductive and inductive logic. In fact, inductive logic is frequently regarded as a contradiction in 
terms, or at best as a poor sibling of deductive logic. However, when operating from within the logical 
framework of entailment, the processes of induction and deduction may be intimately related. 
Deductive logic can be characterized by the idea of complete logical entailment, while inductive logic 
can be described by a relation of partial entailment. In this limited sense, deductive reasoning may be 
considered a special case of inductive reasoning. This situation is portrayed diagrammatically in Figure 
6. 

 
 



 

 
 

Situation A:
Deduction

Situation B:
Induction  

Figure 6. Pictorial representation of deduction and induction as entailment   
(adapted from figure in Ref. 57). 

 
 
In Figure 6, the case of deductive logic is illustrated by situation A, which represents the universal 
propositions “all Ψs are Π,” “all Πs are Ω,” and “all Ψs are Ω.” Situation B represents the case of 
inductive logic where the amount of overlap or partial entailment is measured by degree of 
confirmation. Note that situation B illustrates the propositions “most Ψs are Π,” “most Πs are Ω,” and 
“no Ψs are Ω.” Thus, transitivity does not hold under this probabilistic interpretation of induction. 
 
Although diagrams such as those in Figure 6 are intuitively helpful, the task of measuring partial 
entailment remains problematic. Any method founded on purely numerical mechanisms cannot 
provide the foundation for a probabilistic logic with truth-functional connectives.58 Likewise, systems 
that assign numerical truth values to propositions or nonmaterial conditionals cannot provide a truth-
functional probability logic without additional information about the relationships between the atomic 
components of the antecedent and consequent. 
 
We consider a hypothesis such as, “all Ψs are Π” to be a nonmaterial conditional of the form, 
“Whatever χ might be, if χ is a Ψ then χ is Π.” We think of this conditional as affirming a bundle of 
individual conditionals:59 “If χ1 is Ψ, χ1 is Π;” “If χ2 is Ψ, χ2 is Π;” and so on. The probability of such 
a proposition is based on a sample space of points in a universe w, corresponding to situations in 
which the proposition will be either true or false. Thus, we represent such nonmaterial conditionals as 
bit strings consisting of 1’s and 0’s. For example, i(Ψ) = (i(Ψ)1, i(Ψ)2, …, i(Ψ)n) denotes the binary bit-
string representing the occurrence or nonoccurrence of Ψ. Thus, we have: 
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In other words, 
 

if χ1 is a Ψ then i(Ψ)1 = 1,  
if χ2 is a Ψ then i(Ψ)2 = 1,  
if χ3 is not a Ψ then i(Ψ)3 = 0, 

  

•
•
• 

if χn is a Ψ then i(Ψ)n = 1, otherwise i(Ψ)n = 0. 

Likewise, the symbol i(Π) is referred to as the “incidence of Π,” and denotes an ordered subset of w 
consisting of all points in which Π occurs or is true. 
 
The bit strings described above provide the needed information for a truth functional probability logic 
applicable to the measurement of partial entailment. Bundy58 has proposed an incidence calculus in 
which a set theoretic function is associated with each logical connective from propositional logic. An 
extended version of this calculus has been applied to the measurement of partial entailment.32,42,43 In 
this approach, the degree of confirmation is characterized by epistemic probabilities arrived at by 
measuring the overlap (partial entailment) between the constructs’ extensions represented as binary bit 
strings. ICONKAT and its predecessor Nicod both employ this method to automatically generate rules 
from repertory grid data. DDUCKS and KRS/KSSn use somewhat different approaches to derive rules 
from repertory grid data, as briefly described in section 3.2. 
 
2.4. Decision Analysis, Influence Diagrams, and Possibility Tables 
Many knowledge-based systems are prescriptive in nature. They aim not only to describe some actual 
or potential state of affairs, but also to recommend specific actions. Recommendations made by such 
systems depend on: the alternatives available, information about consequences associated with the 
alternatives, and preferences among these consequences. Unfortunately, knowledge-based systems 
typically treat preferences implicitly and heuristically, making no provision for value structures 
differing from those built into the system. In this section we discuss approaches combining decision 
analysis with constructivist methodologies to overcome these limitations. 
 
2.4.1. The Need for Explicit Preference Models in Knowledge-Based Systems 



 

 
 
In their discussion of preferences, Langlotz, Shortliffe, and Fagan60 cite an example rule from 
MYCIN. This heuristic captures a physician’s knowledge that tetracycline therapy should be avoided 
for children because it may cause dental staining. 

 
If: 

 1) The therapy under consideration is tetracycline 

 2) The age (in years) of the patient is less than 8 

Then: 

 There is strongly suggestive evidence (.8) that tetracycline is not an appropriate therapy for use against the 

organism. 
 

Clancey61 gives a possible chain of four support rules for this heuristic. The first three inferences have 
to do with how one event relates to the occurrence of the next. The fourth, however, is a compiled plan 
of action based on the inference chain. Langlotz et al.60 make the point that no matter how finely we 
break down a chain of reasoning, one rule in the chain will always recommend action based on the 
situation. Action recommendations always presuppose a set of preferences, either stated or implied, 
that cannot be derived from the logic of evidence. 
 

 
tetracycline in youngster 

 => chelation of the drug in growing bones 

  => teeth discoloration 

   => undesirable body change 

    => donʻt administer tetracycline 
 

Because of the nature of heuristics, it is difficult to represent explicitly and flexibly the unique 
circumstances and tradeoffs that may justify an exception to the heuristic. What if, for example, we 
found one or more of the following to be true:  

 
• the infecting organism were resistant to all drugs except tetracycline? 
• the only undesirable bodily change that tetracycline caused was minor intestinal distress? 
• the probability of staining due to tetracycline for a particular patient was only 1 in 100? 1 in 

1000? 
 



 

 
 
When tradeoffs are embedded implicitly within heuristics, it becomes impractical to ask, let alone 
answer, such questions. For example, we could modify the knowledge base by adding additional 
premises to the rule above:  
 

3) The organism can be treated by something other than tetracycline 

4) There is evidence that tetracycline will cause significant intestinal distress 

5) The probability of dental staining due to tetracycline for the patient is less than .01 

 
But since the strength of our recommendation may vary depending on the circumstances present in a 
given situation, we would need to add a separate rule for each action and each particular combination 
of evidence. Representing the knowledge in this form makes it impossible to vary the parameters of 
preference tradeoffs (e.g., risk of dental staining versus effectiveness of tetracycline versus cost of 
treatment) smoothly in response to differences in situation and preferences between patients. While it 
is possible to muster empirical arguments for the truth or falsity of some evidential claim, the 
judgments of utility that guide recommendations and action (given that evidence) are inherently 
subjective: some patients are more willing to take risks than others; some are more concerned about 
treatment effectiveness; some are more able or willing than others to pay for expensive alternatives 
that minimize risk. The greater the stakes of the decision, the more serious are the consequences of 
implicit, inflexible representations of preferences. For this reason, several researchers have discussed 
the need to include such explicit preference models in the knowledge engineering process.60,62-66 
 

Bradshaw and Boose44,45 argued that decision analysis could be effectively combined with 
constructivist methods to model complex problems. Early on, they realized that heuristic approaches to 
uncertainty and preferences were inadequate for high-stakes decision-making. After evaluating 
alternative approaches, they settled on a method that combines repertory grids with decision-analytic 
representations called influence diagrams. 
 
2.4.2. Combining Repertory Grids and Influence Diagrams 
Influence diagrams have been an important advance in the representation of decision problems67,68 and 
recent developments have extended their usefulness as a structuring and communication device 
between participants in the decision.64,69-73 Influence diagrams can be directly solved to obtain 
recommended actions in a way that is consistent with probability and utility theory. In addition, several 
analysis techniques (e.g., sensitivity analysis, value of information, value of control) can be used to 
gain insight into the problem being represented. 



 

 
 
 
Figure 7 shows a screen snapshot of a DDUCKS virtual notebook containing an influence diagram. 
The diagram represents a generic medical decision making template.74 The problem is to determine the 
best treatment alternative for a cancer patient, taking treatment risks and other diagnostic uncertainties 
into account. The treatment strategy is composed of two decisions (Test, Treatment), represented by 
square nodes on the diagram. Round nodes represent treatment uncertainties (Results, Therapeutic 
Effect, Side-Effect), diagnostic uncertainties (Patient Demographics, Observable Symptom, 
Hypothetical Disorder, Physiological Need), and Cost. The eight-sided node labeled “Value” has been 
designated as the criterion to maximize in evaluating the model to determine the best treatment 
strategy. 
 
 



 

 
 

 
Figure 7. A DDUCKS virtual notebook containing an influence diagram for a generic medical 

decision making template. 
 
 

Unfortunately, the creation of valid influence diagram models can require a relatively high level of 
sophistication in the theory and practice of decision analysis. Influence diagram-based tools contain 
some of the algorithms of decision analysis practice, but cannot embody the experience and intuition 
of decision analysis professionals in formulating and appraising decision models. 
 
Constructivist knowledge acquisition methods can be used to overcome some of these problems. For 
example, Gaines75-77 has elaborated aspects of constructivist theory that bear on the role of preferences 



 

 
 
in personal decision making. He proposes a hierarchical model that posits two fundamental processes 
operating as a person models the world:  
 

• flow of information as surprise about events (“news of a difference”78) upward through the 
hierarchy when lower levels cannot account for events, and 

 
• flow of preferences downward as lower-level predictive models accounting for events are 

created to be consistent with higher-level ones. The flow of preference can ultimately result 
in action as higher levels attempt to influence the anticipated future. 

 
Bradshaw and Boose have attempted to make operational certain aspects of Gaines’ model by making 
a distinction between information grids and preference grids. Information grids represent beliefs about 
events, qualities, or states of the world and conditional probability relationships to other events, 
qualities, or states (as in the grid in Figure 1). In preference grids, the elements represent alternatives 
for a decision and constructs represent distinctions of utility that are used to select the best alternatives 
(as in the possibility table example below). For details on how repertory grids and influence diagrams 
may be combined, see Bradshaw, Covington, Russo and Boose.29,30 
 
2.4.3. Combining Repertory Grids and Possibility Tables for Synthesis Problems 
In addition to developing methods for representing and reasoning with explicit preferences, Boose and 
Bradshaw sought for ways to overcome other tool limitations for certain classes of decision-making 
problems. There is a traditional distinction in the literature between analysis and synthesis 
problems.79,80 Analysis problems are generally defined as those for which the alternatives can be 
enumerated comfortably (e.g., simple classification or diagnosis). On the other hand, problems 
involving synthesis (e.g., configuration, scheduling, planning, and design) are subject to combinatorial 
explosion, typically involving far too many possibilities to list. Synthesis problems are often solved by 
constructing (rather than merely selecting between) alternatives. These alternatives are constructed so 
as to be consistent with hard constraints and “good enough” with respect to soft constraints. 
 
Many papers in the literature have disparaged classification models, suggesting that they are inherently 
inferior to simulation models. However, Clancey81 has eloquently argued for the necessity and 
irreducibility of classification models, and researchers such as Gaines36 have demonstrated elegant 
approaches to resource allocation problems based entirely on classification. Bradshaw et al.82 
suggested that decision analysis and constructivist methodologies could be combined to treat synthesis 



 

 
 
problems as a sequence of decisions subject to local and global constraints. Instead of using influence 
diagrams, the approach involved connecting repertory grids to representations called possibility tables, 
which have been used manually in configuration and design problems for many years.83-85 This 
approach is implemented in DDUCKS as Canard.86 
 
Within Canard, hierarchical possibility tables are used to structure information about complex 
alternatives, outcomes, or plans (Figure 8). Columns in the possibility table represent components, 
functions, or issues that relate to the artifact being designed. Within each column, the various 
possibilities listed identify a set of options being considered. Above each column, a set of 
distinguishing criteria appears. Comments about alternatives, columns, possibilities, criteria, ratings, 
preferences, and constraints are portrayed in text annotation panes within the possibility table and 
repertory grid views. Annotations define, justify, or assert something about a particular element in the 
table or grid. To construct a design alternative, a designer selects a set of possibilities from one or 
more columns, defining a path through the table. The system can also suggest new alternatives by 
permuting the constraint space. The names of alternatives appear in the leftmost column. 
 
Possibility tables can be associated with repertory grids to enter information about criteria affecting the 
choice of options. A column of possibilities are represented as elements in the grid, while the criteria 
are shown as constructs. Canard can use repertory grid techniques to elicit and structure information 
about design possibilities and gather the constraints and criteria that guide a designer in the selection of 
these possibilities. Repertory-grid-based analysis tools help designers determine the adequacy of the 
constraints and objectives and focus their attention on descriptions needing further refinement. (See 
Ref. 86 for additional information about Canard’s constraint elicitation, propagation, and refinement 
techniques.) 
 
 

 



 

 
 

Design Alternatives
(paths)

Criteria

Text Annotation
Pane

Components, 
Functions or 

Issues

Possibilities
 

Figure 8. A Canard possibility table for configuration of a computer system. 
 

We have seen how decision analysis techniques can be combined with constructivist representations 
and techniques to model information and preferences in an explicit and rigorous manner. This is 
especially valuable for problems involving a high degree of uncertainty, significant risk, high stakes, 
or complex tradeoffs. 
 
3. A New Generation of Constructivist Knowledge Acquisition Tools 
Over the past several years, many tools incorporating repertory grids have been applied to knowledge 
acquisition. These include Aquinas,35,53 DART,46 ETS,51,52 Flexigrid (see 87), FMS Aid,88 KITTEN,89 
Kriton,90 KSS0,76,77 Nicod,32 PCS,91 and PLANET.92-94 In addition, Wahl95 reported success in 
applications of repertory grid techniques, and validation in a statistics domain was discussed by 
Gammack and Young.96 
 



 

 
 
In the remainder of the paper, we focus our attention on three “second-generation” constructivist 
knowledge acquisition systems: DDUCKS,74,97,98 ICONKAT,24,99 and KSSn/KRS5.54,100 These 
systems form an interesting cross-section of the state-of-the-art for two reasons:  

 
1. They embody the extensive theoretical work integrating the complementary perspectives 

discussed in Section 2. 
2. They have evolved through use of the tools in a variety of contexts and overcoming the 

limitations discovered their application. 
 

In discussing these tools, we pass over much of the development history leading up to these efforts. 
More comprehensive historical accounts have been written by Boose et al.,101 Ford et al.,102 and 
Gaines.103 
 
We begin with a discussion of general architectural and user-interface features of the tools (section 
3.1). Following this, we describe new developments in analysis and induction techniques (3.2), 
multiple expert analysis, and group use of tools (3.3). 
 
3.1. General Architectural and User-Interface Features 
There are interesting similarities and differences in the architectures and user-interface of the three 
systems. We give a description of each tool below. 
 
3.1.1. DDUCKS 
DDUCKS (Decision and Design Utilities for Comprehensive Knowledge Support) is an “open 
architecture” constructivist knowledge modeling environment. Researchers are exploring how 
individual knowledge modeling and decision support tools can work cooperatively with one another 
and with commercial applications such as spreadsheets, databases, or hypermedia software.104 
Applications include enterprise modeling and integration,105 group decision support in an electronic-
meeting room environment,106 and bone-marrow transplant patient follow-up care.74 
 
It is useful to think of DDUCKS in terms of four layers of functionality: workbench, shell, application, 
and consultation. Starting with any layer in the system, a user can produce a set of tools, models, and 
ontologies that can be used to help in configuration of a more specialized system at the layer 
below.98,107 This approach was inspired in many respects by the success of the PROTEGE architecture 



 

 
 
in facilitating reuse and configuration of methods, tasks, and mechanisms for diverse 
applications.108,109 
 
DDUCKS is based on a three-schemata approach to knowledge representation that distinguishes 
between external, conceptual, and internal schemata.107,110 As an implementation of the external 
schemata, we emphasize the use of mediating representations that serve as a means of communication 
between expert and knowledge engineer. Intermediate representations implement the conceptual 
schema, and help bridge the gap between the mediating representations and a particular 
implementation formalism. 
 
Intermediate representation. The intermediate representation (i.e., concept model) consists of 
entities, relationships, and situations as the primary concepts, and domains, properties, and constraints 
as secondary concepts.98 DDUCKS uses CODE4 as the underlying conceptual representation.111-113 
The concept model in CODE provides facilities for semantic unification of information that may be 
simultaneously portrayed from a number of perspectives (e.g., repertory grids, concept maps, 
possibility tables, influence diagrams).98 It sits between the views and the implementation formalism, 
translating the user’s actions into changes in knowledge and database structures. The general 
taxonomy for conceptual modeling has been derived from Tauzovich and Skuce,114 with extensions 
for dynamic and epistemic aspects of the model. CODE4 provides a rich paradigm for the definition of 
knowledge-level concepts. A collection of integrated tools supports the important and frequently 
overlooked aspects of conceptual, ontological, and terminological analysis.115 We are developing 
extensions to the representation to allow the system to make use of additional inferencing and 
representation facilities similar to those found in Sowa’s116,117 conceptual graphs and Gaines’ 
KRS,54,99 which interpret taxonomic and entity-relationship structures in terms of typed formal logics. 
A first order logic system and a simple natural language system allow various types of syntactic and 
semantic checks to be performed, if desired. A comprehensive lexicon allows references to concepts to 
be automatically maintained and quickly accessed. We emphasize the importance of comprehensive 
lexical support so that terminology can be carefully chosen and subsequently managed. Concept 
libraries and default inferencing mechanisms can be augmented by users employing graphical views 
and an integrated scripting and query language. A translator is currently under development98 to allow 
conversion of knowledge represented into KIF162 syntax by means of Gruber’s Ontolingua.164 
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Figure 9. The intermediate representation in DDUCKS, surrounded by examples of generic interaction 

paradigms, and mediating representations. 
 
 

Interaction Paradigms. User-interface management systems (UIMS) are becoming an essential part 
of interactive tool development and end-user tailoring.118 We are extending the capabilities of a 
Smalltalk-80-based direct-manipulation user-interface builder to build a DDUCKS UIMS, called 
Geoducks. Geoducks relies on the Smalltalk-80 MVC (model-view-controller) approach for managing 
consistency among views.119-121 The MVC approach provides a way to factor out the data in an 
underlying model from the data in dependent views, so that changes to the model in one view are 
immediately reflected in all related views. 
 
The six views surrounding the intermediate representation (see Figure 9) correspond to the generic 
user-interface interaction paradigms that are implemented as abstract “pluggable” view classes.120-122 
These views are generic in the sense that they define the graphical form for the representation, but the 
form has no underlying semantics. Within DDUCKS, various configurations of these interaction 
paradigms can be called up in sketchpad mode to record free-form graphical and textual information. 
For example, individuals and groups can capture back-of-the-envelope drawings, agendas, issues, 
action items, requirements, concept-map-like structures, and other information pertinent to their task. 
While not part of the formal model, users can link elements created in sketchpad mode to elements in 
other views in hypertext fashion. 



 

 
 
 
Mediating representations. Specialization facilities for concepts in a modeling ontology, in 
conjunction with declarative filtering agents (interpreters and expressors) allow users to tailor generic 
interaction paradigms for modeling purposes.98 By combining one or more interaction paradigms with 
a semantics and problem-solving method defined in the filtering agents, a methodology-specific or 
application-specific mediating representation may be created. Users define mappings between symbols 
and actions in the interaction paradigms, and operations on logical entities, relationships, and 
properties in the intermediate representation. As shown in Figure 9, the same interaction paradigm may 
be used to display and operate on different aspects of the concept model, and the similar aspects of the 
model may be edited using different interaction paradigms. For example, influence diagrams combine 
a graph view with the concepts of decision, chance, and value nodes and the problem-solving method 
of maximization of expected utility across decision alternatives. Trade study matrices (a methodology-
specific kind of repertory grid) are built out of a matrix view, the concepts of alternatives, criteria, and 
ratings, and a heuristic classification problem-solving method. Process views combine a graph view 
with the a formal definition of activities and relationships between them. Type definition views allow 
the users to extend the built-in ontology.98 Configured with semantic information, these mediating 
representations operate in modeling mode, portraying different perspectives on the formal concept 
model in the intermediate representation. By virtue of the Smalltalk-80 model-view-controller 
paradigm, consistency is maintained among the model views. 
 
Virtual notebook. The volume and diversity of information that can be represented in DDUCKS 
drives a requirement for ways to manage, organize, and link that information. A virtual notebook 
facility helps collaborating individuals collect and organize the diverse materials associated with a 
particular knowledge acquisition project. It also helps manage changes between different versions and 
views of the model as it evolves. A new notebook is typically opened in “double-page” mode, 
displaying a page on the right and one on the left as in a paper notebook. The left page typically 
contains a table of contents view listing the set of pages available in the notebook. The right page 
might contain a representation for some portion of the knowledge base. Users move from page to page 
by selecting a “tab” on the side of the notebook or selecting an item in the table of contents view. 
Alternatively, the user can query the notebook to bring up pages meeting user-defined criteria. Figure 
7 shows a virtual notebook in single-page mode. 
 
Using templates, groups can tailor the contents of the boiler-plate virtual notebook to be consistent 
with their preferences for accessing, viewing, and using the information. For example, a knowledge 



 

 
 
engineering team’s blank notebook can come preconfigured with information about organizational 
standards (e.g., concept and method libraries, reporting forms) and procedures (e.g., required steps in a 
project plan), just as a real notebook could be preloaded with labeled dividers and forms. Besides its 
obvious use in managing information about the model, the virtual notebook supports the team as a 
simple computer-supported meeting facilitation tool and as a form of group memory.  
 
3.1.2. ICONKAT 
ICONKAT (Integrated Constructivist Knowledge Acquisition Tool) is a knowledge acquisition and 
representation system under evolutionary development at the University of West Florida. It 
incorporates principles and techniques from both personal construct theory and assimilation theory. 
ICONKAT provides extensive interactive assistance to the domain expert and knowledge engineer in 
cooperatively modeling expertise. Like DDUCKS, ICONKAT is based on a three-schemata 
knowledge representation approach. The conceptual domain model is constructed within the 
framework provided by ICONKAT’s mediating and intermediate representations—providing direct 
support for model creation, documentation, maintenance, knowledge base generation, and the resulting 
expert system’s explanation facility. 
 
ICONKAT’s collaborative modeling environment exploits the expressiveness of concept maps to 
assist users in hierarchically organizing the various mediating representations (e.g., other concept 
maps, repertory grids, images, audio, video, documents) into browseable hypermedia domain models 
(see Figure 11). Interestingly, concept maps play a twin role in this process. First, concept maps are 
one of the principal means by which the expert and knowledge engineer represent knowledge about the 
domain. In particular, concept maps have proven effective in eliciting and representing what the 
participants see as the knowledge landscape or topology at a given level of abstraction. Second, 
concept maps furnish a rich organizational framework that can serve as the interface to the domain 
model. Thus, while the expert and knowledge engineer collaborate in using concept maps to model the 
former’s problem-solving knowledge, they are also, in essence, building the structure of the interface 
that subsequent users will employ to explore the model. 
 
The knowledge acquisition process and its ramifications do not culminate with deployment of the 
system, but rather extend throughout its useful life. Accordingly, in addition to a flexible modeling 
environment, ICONKAT has been designed with the complete knowledge-based system life cycle in 
mind. In particular, ICONKAT supports a new explanation paradigm, in which, the domain model that 
emerges from the knowledge acquisition process is subsequently exported from the development 



 

 
 
environment to the delivery environment, where it serves as the foundation of the explanation 
capability for the deployed system.  
 
ICONKAT was used in the design and construction of NUCES: Nuclear Cardiology Expert System.123 
This is a large-scale expert system for the diagnosis of first pass cardiac functional images, a 
noninvasive radionuclide technique used to evaluate heart wall motion abnormalities. 
 
Mediating representations. ICONKAT’s mediating representations are designed to promote 
communication and understanding between the human participants in the knowledge acquisition 
process. A good mediating representation fosters the constructive modeling processes (e.g., meaning 
making and meaning sharing) by empowering domain experts and knowledge engineers to 
cooperatively build models of expert knowledge. Furthermore, mediating representations may 
facilitate explanation (see discussion below) by enabling the system’s eventual users to explore the 
conceptual domain model without resorting to low-level representations (e.g., C code, lisp, rules). 
 
ICONKAT’s principal mediating representations are the concept map and the repertory grid. It uses 
these complementary mediating representations synergistically. In ICONKAT, concept maps depict 
the conceptual relationships of the domain as constructed during the knowledge acquisition process. 
For example, the concept map in Figure 2 expresses relationships among ejection fraction (a critical 
numerical value), other manifestations of heart wall image abnormalities (e.g., “blue fingers”), specific 
heart diseases (e.g., ischemia), and human physiology. The relevant disease states appear at the lowest 
levels of the map, and were incorporated into the expert’s repertory grid (Figure 1). Note that the map 
includes the domain expert’s personally constructed expertise in the form of visual analogies that he 
employs as markers for perceived image abnormalities (e.g., “blue fingers,” “bull’s-eyes” and “ice 
cream cones”). These markers are the basis upon which the expert differentiates the various disease 
states, and were included as constructs in a repertory grid. In addition to concept maps and repertory 
grids, ICONKAT supports the use of a variety of other mediating representations, such as images, 
audio, Quicktime movies, and documents. 
 
Intermediate representation. ICONKAT’s intermediate representations perform an important 
integrative function and are an area of ongoing evolution, testing and revision. Although mediating 
representations have enhanced the richness and subtlety with which the human participants in the 
knowledge acquisition process can model the domain, the need for integrative intermediate 
representations has become increasingly apparent. For example, much of the work on ICONKAT’s 



 

 
 
intermediate representations has focused on how they might enhance the relationship between 
repertory grids and concept maps. In addition, the kind of representations that ICONKAT provides as 
the basis of its modeling environment (i.e., informal, graphical and textual mediating representations) 
are designed for the benefit of humans, while implementation formalisms are focused on 
computational issues—causing a substantial semantic gap. ICONKAT’s intermediate representations 
are designed to partially bridge this gap, thus enabling feedback, analysis, and verification throughout 
the entire process of system development. ICONKAT’s intermediate representations (sometimes 
referred to as the ‘glue’) consist of a collection of modeling primitives implemented as abstract data 
types in C++. 
 
Support for Explanation. 
A machine that incorporates expert judgment in a given domain is more likely to find acceptance by 
those seeking its advice if it can explain its recommendations. Accordingly, an explanation capability 
should enable a user to get a complete, understandable answer to any sort of relevant question about 
the knowledge explicitly and implicitly embodied in a system’s implementation formalism (e.g., rules, 
frames, or whatever). Unfortunately, the capacity of most current expert systems to explain their 
findings (i.e., conclusions) is limited to inadequate, causal descriptions of the behavior of the 
performance environment’s reasoning mechanism. One key to the design of explanation subsystems 
that are capable of deeper and less mechanistic accounts is to recognize that the development of an 
explanation facility is a fundamental aspect of the knowledge acquisition process.99 
 
Instead of arduously constructing a model of problem solving expertise, and then throwing it away 
(upon translation into the syntax of the performance environment), ICONKAT’s explanation paradigm 
allows users to exploit the model formed during the knowledge acquisition process. As depicted in 
Figure 10, the model resulting from the knowledge elicitation process is exported from the 
development environment to the delivery environment. It serves there as the foundation of the 
explanation capability for the deployed system. 
 
 



 

 
 

 
Figure 10. Transition of the domain model from development to the basis for explanation of the 

delivered system (adapted from figure in Ref. 24). 
 
 
A session from NUCES (a medical expert system built in the ICONKAT environment) illustrates the 
ICONKAT approach to explanation (see Figure 11). When a user requests explanation, the 
performance environment is interrupted, and the user is switched into the context-sensitive explanation 
subsystem and conveyed to an appropriate location within the multidimensional space representing the 
model. From there, the user can assume an active role in the process of constructing his or her own 
explanation by freely exploring the conceptual model and browsing among a wealth of supporting 
objects (e.g., audio, video, documents, images, repertory grids, concept maps, rules, etc.). Users end 
their browsing as soon as they are confident that they have constructed an adequate explanation from 
the available information. This constructivist approach to explanation engages the user in an 
interactive process of observation, interpretation, prediction, and control. 
 
 



 

 
 

< INSERT FIGURE 11 ABOUT HERE > 
Figure 11. A NUCES session illustrating the notion of participatory explanation. 

 
 

The navigation problem, an important concern in hypermedia systems, is largely ameliorated by use of 
the use concept maps as a guide to traversing the logical linkages among clusters of related objects 
(see the ‘Concept Map’ window in Figure 11). Concept maps provide an elegant, easily understood 
interface to the domain model. A system of concept maps is interrelated by generalization and 
specialization relationships among concepts, which lead to a hierarchical organization. The 
explanation subsystem provides a window that shows the hierarchical ordering of the various maps, 
highlights the current location of the user in the hierarchy, and permits movement to any other map by 
clicking on the desired map in the hierarchy (see the window ‘Concept Map Hierarchy’ in Figure 11). 
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Figure 12. Close-up of the icons found at each node of the concept maps. 

 
 
Depending on the location of the user in the domain model, he or she has different options to explore. 
At each node, the user can select from a menu of icons as shown in Figure 12. These correspond to text 
(a textual document), images, a popup menu of concept maps, repertory grids or video (implemented 
using Quicktime) related to the topic of the selected node. These icons will appear in various 
combinations depending on what information is available for a given concept. The ‘Concept Map’ 
window in Figure 11 shows how the concepts (nodes) are populated with the icon menus illustrated in 
Figure 12. At any time, the user can backtrack by clicking on the ‘back-arrow’ icon, as shown in the 
‘Concept Map’ window. This scheme provides the user great flexibility in navigating through related 



 

 
 
concepts, as well as, guideposts in moving among the various sources of information available for a 
specific concept.  
 
 
3.1.3. KSSn/KRS 
KSSn (Knowledge Support System) is an ongoing experiment in the development of knowledge 
acquisition tools which incorporates aspects of personal construct psychology. KSSn100 is designed 
around a knowledge representation server (KRS) implemented in C++, providing services based on 
those of KL-ONE/CLASSIC40,41 augmented with inverse roles, data types for integers, reals, strings 
and dates, and with rule representation that allows one rule to be declared an exception to others. The 
server supports the operations of intensional logic, and one of the modules attached to it is a graphic 
knowledge editor supporting the associated visual language.54 While KSSn provides export facilities to 
expert system shells, the KL-ONE/CLASSIC inference capabilities of the server allow the system to 
be used as a complete problem solving environment. For example, KSSn has been used on a room 
allocation problem36 derived from an ESPRIT project124 that was placed in the public domain as part 
of Project Sisyphus.125 
 
Figure 13 shows the architecture of KSSn as a family of modules attached to the knowledge 
representation server, KRS. The description of the system is taken directly from Gaines.36 

 
 



 

 
 

Formal Knowledge Base

Dictionaries
Concept Records

Extension Records
Co-Reference Records
Subsumption Records

Role Records
Individual Records

Filler Records
Dependency Records

Rule Records
External Records

Other Formal 
Knowledge

& Data Bases

Knowledge
Representation Server

Definition
Assertion

Subsumption
Recognition

Constraint Propagation
Rule Propagation

Exception Reasoning
Query Satisfaction
External Interface

Other 
Knowledge

Representation 
Servers

Language
Interface

Compilers,
Generators

Knowledge
Representation 

Languages

Hypermedia
Informal

knowledge 
base

Grapher

Problem
Solving

Frame/rule/case-
based inference

Conceptual
Induction

Concepts & 
default rules

Repertory Grid 
Elicitation
Graphic

interaction

Conceptual
Clustering

Graphic concept
generation

Knowledge 
Editing
Graphic

interaction

Textual,
Visual

Text
Analysis
Graphic

interaction

 
Figure 13. Architecture of KRS (taken from Gaines36). 

 
 

The modules are (reading clockwise from the top left):  
 
• Interface modules to other knowledge bases and servers, including databases. 
• A hypermedia module allowing informal knowledge structures in text and images to be 

captured, accessed and linked. The linkage structure itself is held as a knowledge base. 
Domain-specific tools may be developed in HyperCard and existing knowledge acquisition 
tools in HyperCard may be integrated, for example Woodward’s126 Cognosys for the 
analysis of protocol data in textual form. 

• A text analysis module allowing documents to be analyzed in terms of word usage, and 
associations between significant words to be graphed—based on TEXAN in KSS0. This 
enables protocols and technical documents to be used to initiate knowledge acquisition. 

• A repertory grid expertise transfer module allowing graphic definition of concepts and 
graphic creation and editing of individuals—based on the elicitation screens of KSS0. 

• A conceptual clustering module allowing interactive definition of new concepts—based on 
the hierarchical and spatial clustering from KSS0. 



 

 
 

• A knowledge editing module allowing the interactive development and editing of 
knowledge structures through a visual language. 

• A conceptual induction module creating rules about specified subsets of individuals and 
transforming them to a minimal set of concepts and default rules—based on the INDUCT 
algorithm. 

• A problem solving module supporting frame, rule and case-based inference from the 
knowledge structures. 

• A grapher laying out specified parts of the concept subsumption graph, concept structures 
and individual structures—based on an incremental layout algorithm that can be used 
interactively to support the production of clear visual knowledge structures. 

• A language interface accepting and generating definitions and assertions in formal 
knowledge representation languages, both textual and visual. 

 
The knowledge representation services of KRS, the central server module, correspond to those of 
CLASSIC,41 augmented with inverse roles, data types for integers, reals, strings and dates, and with 
rule representation that allows one rule to be declared an exception to others. For the purposes of this 
paper KRS may be seen as providing a fast and principled implementation of a frame/rule knowledge 
representation and inference engine capable of operating with large knowledge bases. 
 
KDRAW Visual Language. An important component of KSSn is the graphic knowledge editor, 
KDraw. This is a drawing tool designed for ease of use that provides a visual structure editor for 
semantic networks representing classes, objects and rules in KRS. Nosek and Roth127 have 
demonstrated empirically that the visual presentation of knowledge structures as semantic nets leads to 
more effective human understanding than does textual presentation of the same structures. Gaines54 
has developed a formal visual language that corresponds exactly to the underlying algebraic semantics 
of KRS (see Figures 4 and 5). It has remarkably few visual primitives and is easily learned and 
understood. 
 
The KDraw design defines the visual syntax and underlying semantics of a visual language for term 
subsumption knowledge representation languages in the KL-ONE family. It focuses on the use of the 
language to enter and edit knowledge visually, and on its application in a highly interactive graphic 
structure editor. However, the language is also well-suited to the display of knowledge structures, and 
the system includes a grapher using Watanabe’s128 heuristics. 
 



 

 
 
The editor is modeled on Apple’s MacDraw with additional features appropriate to the language such 
as arcs remaining attached to nodes when they are dragged. The syntax of possible node 
interconnections and constraint expressions is enforced—it is not possible to enter a graph that is 
syntactically incorrect. Cut-and-paste of graphs and subgraphs is supported, and pop-up menus allow 
nodes to be connected with the minimum of effort. Updates are efficient and graphs with over a 
thousand nodes can be manipulated interactively. Scroll, zoom and fit-to-size facilities allow large data 
structures to be navigated easily. 
 
The grapher interface to the knowledge representation server allows the knowledge structures to be 
used deductively to solve problems and give advice. Other programs such as HyperCard can also 
access the server and provide additional functionality such as customizable end-user interfaces. 
Repertory grid data and induced rules, elicited and analyzed through the KSS0-style modules, may be 
exported to the grapher for visual analysis and editing. 
 
3.2. Analysis and Induction Techniques 
Statistical procedures implemented in general-purpose repertory grid tools such as PLANET92,93 and 
OMNIGRID129 have been used for many years to explore interesting relationships among elements 
and constructs.130 Such analysis techniques have included information measures, nonparametric factor 
analysis, conventional factor analysis, principal component analysis, multidimensional scaling, and 
hierarchical cluster and linkage analyses, among others.16,27 There also have been some attempts to 
construct precise mathematical models of the cognitive processes reflected in grid data and to use these 
models for both simulating the performance of hypothetical respondents and predicting the responses 
of real ones.131 
 
KSS0 contain facilities for eliciting distinctions from text input or protocols.76,77 Text input from a 
book or a set of protocols may be analyzed through a procedure which clusters associated words and 
renders them as knowledge structures in the KRS visual language. The text is fully indexed by all non-
noise words grouped by their stems, and a coupling matrix of word associations is calculated using a 
simple distance-in-text measure. This leads to a schema from which the expert can select related 
elements and initial constructs with which to commence grid elicitation or semantic network 
construction. In the longer term the text analysis system could be extended with the more powerful 
parsing and semantic analysis techniques now being developed for knowledge bases.132 
 



 

 
 
Induction techniques in ETS,52 KSS0,133 and Nicod32 were originally developed to create rules from 
repertory grids for export to commercial expert system shells. A brief discussion of the logic of 
confirmation method by which both Nicod and ICONKAT derive rules from repertory grid data is 
given in Section 2.3.1. Induction techniques based on information theory have also become more 
widely available.134 For example, in KSSn/KRS, Gaines135 has developed INDUCT, a set of empirical 
induction techniques that derive potential implications between concepts based on noisy datasets or 
repertory grid information. The system is an extension of Cendrowska’s136 PRISM algorithm, 
augmented by the capability of generating more compact and intuitive rule sets that include explicit 
exceptions.38 Facilities in KSSn/KRS hierarchical concept structures to be derived directly from these 
rules. In their work on Axotl and Aquinas, Bradshaw and Boose explored the induction of Bayesian 
graphical models from repertory grids and databases. This work is being continued as part of the 
medical application of DDUCKS.137,138 
 
ICONKAT contains a novel approach supporting elicitation of superordinate constructs through the 
use of neural nets. GridNet uses the expert’s preliminary repertory grid data as input to a self-
organizing, multilevel, artificial neural net. The net uses back propagation to identify abstractions 
(“hidden features”) taken from this nonlinear hierarchy. These artificial neural net abstractions are then 
fed back to the expert as element clusters for the elicitation of new superordinate constructs. In their 
nuclear cardiology application, Ford and his colleagues were successful in discovering high-level, 
pivotal constructs as a result of using GridNet.24 
 
3.3. Multiple Expert Analysis and Group Use of Tools 
Two of the most active areas of knowledge acquisition research concern multiple expert analysis and 
group use of tools. Theoretical as well as practical concerns also make this one of the more 
controversial areas. We present a summary of work in this area by each group separately below. 
 
3.3.1. KSSn/KRS 
Shaw139 developed an approach to account for the psychological process not only of individual people 
but also for that of functional groups. Gaines and Shaw93 used this point of view to develop several 
techniques to compare and contrast repertory grids obtained from different individuals. They employ 
exchange grids for the measurement of understanding and agreement between either two people or two 
occasions. Another procedure produces a set of socionets which indicates the links of similar 
construing within the group, and a mode grid showing the dimensions which are readily understood by 



 

 
 
the majority of the group. Information from analyses can be used to establish consensus about 
terminology and distinctions.140 
 
Besides the analysis and use of knowledge from multiple experts, the integration of tools in 
KSSn/KRS has provided the means for the development of special-purpose ‘groupware’ applications, 
based in part on work from previous efforts.91 One of these, RepGridNet, supports integration of 
repertory grids and socioanalysis tools with an electronic mail subsystem to facilitate the formation 
and management of ‘special interest groups.’141 A second effort has developed GroupWriter, a word 
processor that supports collaborative authoring of scientific papers.142 GroupWriter provides a 
hypertext-style linkage structure to document components it is readily extended to provide hypertext 
links to modules within a knowledge acquisition system. For example, source documents and 
transcripts of interviews and protocols may be linked to the knowledge structures that have been 
developed based on them. This can be done without undermining the visual appearance of the original 
document. Documents generated as part of the knowledge engineering process can also be treated in 
this way—they are normal documents with full typographic formatting and graphics, but they are also 
tightly embedded in the knowledge structures being developed. 
 
3.3.2. ICONKAT 

There are as many opinions as there are experts 
— Franklin Delano Roosevelt 

 
Ford et al.143,144 have elaborated a personally constructed and socially situated view of expertise that 
helps us understand the problems that often arise in conjunction with the elicitation and representation 
of expertise from multiple domain experts. From this perspective, knowledge can be viewed as 
functional but fallible representations not of reality writ large but of experience. In this sense, an expert 
is perceived to possess more functional representations than non-experts. For example, certain 
physicians are deemed to be ‘experts’ not necessarily because they possess more valid medical 
information than their colleagues, but rather because they are perceived to be experts (for a variety of 
reasons) by their medical constituency. The expert’s representations or procedures need not be valid, in 
a rational-empirical sense, they need only be functional in helping the constituencies manage their 
uncertainty, just, for example, as all kinds of ‘invalid’ past medical practice (when seen from the 
vantage of current medical belief) have done. It follows that the expertise does not reside in the expert 
per se but in the expert-in-context. In brief, expertise is socially situated. Not only have we lost an 
external (reality) reference for expertise, but we have lost an individual reference as well. The 



 

 
 
minimum unit of analysis is not the individual expert, but rather is the expert in context with his or her 
constituency. 
 
Eliciting, representing, and usefully coalescing the personally constructed and context dependent 
knowledge of several experts is a daunting task. Of course, it is not difficult to elicit all kinds of 
standard information (i.e., widely shared consensual beliefs) from several experts. However, it is much 
more difficult to elicit and represent the personally constructed experiential knowledge that accounts 
for each of them having a constituency (the minimum requirement for holding expert status in the first 
place). Further, much of this knowledge is social and/or political in nature and all of it is context 
dependent with respect to its usefulness. If, as we propose, expertise is personally constructed and 
context dependent, then any effort to employ multiple domain experts must also elicit and represent the 
various contexts in which they operate. 
 
If on the other hand, the knowledge engineer assumes that there exists some ‘gold standard’ of 
knowledge and that experts each possess various parts of this existent knowledge (i.e., REALITY), 
they might be tempted to follow the naive strategy, “that if one expert is good, then two are better.” 
However, this is usually a mistake. In contrast, it has been observed that in some cases, co-mingling 
the domain models of multiple experts tends to cause a “regression to the mean,” and that the resulting 
system is ‘less expert’ than either individual.143 In addition, Ford and Adams-Webber143 have noted on 
several occasions that the more successful the knowledge acquisition process has been in modeling a 
particular expert’s most relevant functional abstractions—the more difficult it will be to add another 
expert to the emerging and typically idiosyncratic domain model. In the somewhat unusual 
circumstance in which the knowledge engineer has multiple bona fide domain experts at his/her 
disposal, we posit that it is usually preferable to build a separate knowledge base for each expert rather 
than attempting to mingle their expertise in a single unified knowledge base. 
 
This is not to say that there are no circumstances which warrant the use of multiple domain experts, 
but rather to counsel caution in their application. In fact, ICONKAT’s collaborative modeling 
environment is being adapted for application in a collaborative learning project with children of 
several countries.145 Collaborative learning is construed as an enterprise in which the learners, and 
perhaps their teachers, cooperatively build an explicit knowledge model. There are strong analogies 
between this collaborative learning project and the ICONKAT approach to knowledge acquisition with 
multiple domain experts. 
 



 

 
 
 
3.3.3. DDUCKS 
Aquinas incorporated some of the multiple expert analysis techniques developed by Shaw and Gaines 
and used them to guide negotiation among experts.146,147 Aquinas also added the significant new 
feature of allowing consultation users to review the results from multiple experts simultaneously.148,149 

The reasoning engine used results from the experts to display dissenting opinions (i.e., the set of 
consultation results that was most different from the rest). These notions of “running the experts in 
parallel” (i.e., independent expert systems) and of presenting dissenting opinions seem to be useful in 
some situations. We plan over time to incorporate some of these features in DDUCKS. However, the 
cautions offered above and in Ford et al.143,144 should be kept in mind. 
 
In addition to the multiple expert analysis techniques discussed above, an effort is underway to adapt 
the DDUCKS environment for group use. Boose et al.106 describe a comprehensive decision model for 
group decision support systems, based on an analysis of commercially-available electronic meeting 
support systems150 and their experience with automated knowledge acquisition tools. The integrated 
model combines current brainstorming-oriented methods,151 structured text argumentation,152,153 
repertory grids, possibility tables, and influence diagrams. Each component will address weaknesses in 
current group decision support systems for certain types of problems. 
 
4. Conclusions: The Future of Personal Construct Theory and Knowledge Acquisition 
In conclusion, it is interesting to characterize the evolution of architecture for systems developed by 
The Boeing Company, University of West Florida, and University of Calgary groups in terms of four 
stages: 
 
1. Era of the single-approach rapid-prototyping tools. The earliest predecessors of these tools (i.e., 
ETS, Nicod, PLANET) were based on repertory grid interviewing techniques, representations, and 
analysis tools. They were generally used for rapid-prototyping of classification problems, following 
which, rules were exported to a disk file for use by a commercial expert system shell. 
 
2. Era of monolithic integration. Integration became the theme as knowledge acquisition workbenches 
(e.g., Aquinas and KSS0) incorporated several additional tools and representations. Within Aquinas, 
export to external shells was de-emphasized as internal problem solving capabilities increased and 
became difficult to replicate in traditional shells. 
 



 

 
 
3. Era of decoupling and interapplication communication. This stage represents the current state-of-
the-art. Developers of ICONKAT, KSSn/KRS, and DDUCKS decouple components of their systems 
to allow integration with tools springing from complementary theoretical perspectives (e.g., concept 
maps, neural networks, influence diagrams, possibility tables, semantic networks) and to exploit 
emerging operating-system-based interapplication communication protocols. Two-way communication 
with commercial (e.g., HyperCard, Excel, Nexpert, databases) and internally-developed (e.g., DART, 
Babylon) applications is established.104 Easy tailoring of the user-interface is made possible by the 
adoption of three-schemata knowledge representation approaches107,110 and more general 
configurability allowing multiple problem-solving approaches is made possible through the use of 
PROTEGE II and KADS-like architectures.108,109,154,155 A better understanding of expertise and 
modeling is informing the design of knowledge acquisition tools.81,110,143,144,156,157 Knowledge 
acquisition tools are beginning to target wider applications such as information retrieval, education, 
personal development, group decision support, and design rationale support. 
 
4. Era of knowledge sharing, adaptivity, and intelligent interoperability. Over time, we expect to see 
systems migrate to a state of “intelligent interoperability,” that is “intelligent cooperation among 
systems to optimally achieve specified goals.”158 In such a scheme, nearly all communication between 
systems will be on a peer-to-peer basis, with transparent mechanisms preserving semantics across 
diverse representations and ontological frameworks.159-165 Computing will become “ubiquitous” as 
microprocessors become an integral part of office and home surroundings and as inexpensive laptop 
and palmtop systems with wireless communication systems proliferate.166-168 System components will 
become even more modular and finely-grained.169,170 Radical tailorability, embeddability, and reuse of 
components will be possible through sophisticated object-management and end-user-oriented 
configuration environments.171-176 A wider variety of diagrammatic and pictorial representations will 
be available.177,178 A final step toward intelligent interoperability would be to embed agent programs 
within each cooperating system, which include primitives for communicating and sharing resources 
with other agents.179-182 Sophisticated intelligent assistant and information retrieval systems capable of 
learning and using context-specific indices will be based on such capabilities.183-185 
 
Over time, the convergence of advanced documentation and knowledge representation tools will 
culminate in the development of a wide variety of knowledge media, computational environments in 
which explicitly represented knowledge serves as a means of communication among people and their 
programs.186,187 Adaptive document systems will tailor the content and presentation of multimedia 
produced to the interests, abilities, and situation of the user, fully integrating the functions of design 



 

 
 
documentation, operations manuals, and computer-based training tools.188,189 They will transcend the 
artificial boundaries between documentation and modeling tools, freely incorporating not only static 
drawings and graphical animations as illustrations, but also simulations and full working models. 
 
As new needs and opportunities arise, the roots of personal construct theory continue to nourish 
vigorous growth and development in knowledge acquisition research. We look forward to the new era 
of work ahead, and see a bright future for modeling tools based on constructivist theory. 
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