
In T. Wetter, K-D Althoff. J.H. Boose, B.R. Gaines, M. Linster & F. Schmalhofer (Eds.),
Current Developments in Knowledge Acquisition: EKAW-92. Berlin/Heidelberg, Germany:

Springer-Verlag, 1992.

eQuality: An Application of DDUCKS to Process
Management

Jeffrey M. Bradshaw, Peter Holm, Oscar Kipersztok & Thomas Nguyen

Computer Science, Research and Technology, Boeing Computer Services
P.O. Box 24346, M/S 7L-64, Seattle, Washington 98124 USA (206) 865-3422;

jbrad@atc.boeing.com

Abstract. Process management is a method for improving Boeing’s business
processes, however many aspects have been difficult to implement. eQuality is a
software system based on a framework called DDUCKS that is being designed to
support the process management life cycle. We take a knowledge acquisition
approach to the development of the tool, emphasizing the importance of mediating
and intermediate knowledge representations. Sharing and reuse of tools, models, and
representations is facilitated through a layered architecture. eQuality’s process
documentation capability includes a number of views, that can be used either in
sketchpad or model mode. Using the views, an integrated business enterprise model
may be developed. Analysis and simulation tools supporting process improvement
are implemented with attribute, function, and task editors that make use of a user
scripting language and extensible function library. A virtual project notebook is used
to organize project information and help facilitate group meetings.

1 Process Management at The Boeing Company

The Boeing Company is undergoing fundamental changes in the way it manages its
business processes. There are many catalysts for these changes, springing from both
internal and external sources — for example, the Boeing Process and System Strategy, the
need for concurrent product definition on the new 777 plane, cost management initiatives,
CALS, and customer demand for low cost and high quality. Boeing CEO Frank Shrontz
[72] has made continuous quality improvement the company’s number one objective,
affirming that it constitutes “the cornerstone of our business strategy to be the world’s
leading aerospace company.”

In 1988, the company undertook a study of traditional aviation design and manufacturing
processes. As a result of the study, the Corporate Computing Board developed a new
process requiring concurrent design, build, and support activities. While concurrent design,
build, and support efforts require significant advances in technology (e.g., 100% 3D CAD
digital product definition and preassembly), an equally important challenge is to make the
necessary cultural and organizational changes. In the past, processes and organizations
remained unchanged when automated support tools were developed. However, new
computing applications could do little of themselves to reduce problems of error and
rework. Now we are required to document and streamline business, engineering, and

manufacturing processes before we consider automating them. This is the only way to
avoid automating wasteful practices or implementing obsolete design requirements [47].

Process management is a rubric that encompasses the several methodologies adopted by
Boeing for improving business, engineering, and manufacturing processes. To implement
process management, the company has formed many process improvement teams, each
charged with understanding and streamlining a particular aspect of the business. The teams
typically go through the following steps:

• Identify and document existing key cross-departmental processes using

integrated models of the activities, the items flowing through the activities,
and related entities such as organizations and resources.

• Establish points of measurement, then determine how to improve the process
by minimizing defects, reducing cycle time, and eliminating unnecessary
activities.

• Support the execution of processes, and monitor performance as part of
continuous improvement.

We distinguish process management from process implementation methodologies and
tools. Process management is targeted toward planned, repeatable, but modifiable business
processes, regardless of whether automation is being considered. Process implementation
methodologies, on the other hand, focus on solving a particular instance of a problem (e.g.,
creating a specific piece of software, ordering a part, manufacturing a given number of
widgets before a particular deadline). They are geared toward successful completion of a
unique, one-shot process. Our effort is currently oriented toward supporting process
improvement teams; links to implementation methodologies and tools may be addressed in
future stages of the project.

In 1989, we surveyed several process improvement teams to determine their current
practices and needs. Our findings are summarized in Figure 1, which depicts process
management as it is typically implemented. Most teams rely on sticky notes for the early
stages of process documentation. Teams track issues and comments manually using large
flip charts attached to the walls of the meeting room. Once there is consensus on the a
description of the current process, a person who is expert in the use of drawing or CASE
software creates a diagram of it. Relatively few teams make it past the process
documentation phase. When they do try to measure the process, they use separate analysis
and charting programs that are not integrated with the process diagramming tools.
Sometimes they must key in information more than once in order to exchange data
between different programs.

yes

STOP

Gen

Req
Review Agree

no

log

track

notify

Budget

fill

date

fill

date

fill

date

int

ext

Requesting

Team

Producing

Mgmt

Current

Mgmt

Business

Mgmt

External

Resource Mgmt

Senior

Mgmt

no

yes

STOP

Ext.

Proc.

none

ext

int

Resolve

Copy

Teams

Post-it
notes

Simple drawing
program

Data Spread-
sheet

Chart

Figure 1. Process management as usually done.

To address these problems, we needed to integrate the functions of an automated process
management system (Figure 2). To manage the complexity of enterprise-wide business
processes, we need more than thorough documentation—we must have process
improvement tools to help us discover how our work can be simplified and streamlined; we
must have work-flow execution tools operating on ‘live’ process models to support our
performance of tasks and to facilitate measurement as part of continuous improvement.

To access, share, and reuse models within different tools or for different applications, we
need means to translate between them without loss of meaning. A number of standard
languages, protocols, and interchange formats are emerging [e.g., 17, 66]. The Semantic
Unification Meta-Model (SUMM) is an effort being undertaken by the PDES Dictionary /
Methodology Committee [29] to define a formal semantics for such modeling languages.
An interface between process management tools and model unification capability based on
standards such as the SUMM specification will provide means for data exchange with
commercial software (e.g., Excelerator™, IDEF-based tools), internal Boeing tools (e.g.,
Boeing Flow), and repository management systems. The availability of automated
interchange capability will also reduce barriers to active collaboration and sharing between
research groups, in the spirit of previous manual efforts such as [60].

Requesting

Team

Producing

Mgmt

Current

Mgmt

Business

Mgmt

External

Resource

Mgmt

Senior

Mgmt

Requesting

Team

Producing

Mgmt

Current

Mgmt

Business

Mgmt

External

Resource

Mgmt

Senior

Mgmt

yes

STOP

Gen

Req Review Agree
no

log

track

notif

y

Budget

fill

date

fill

date

fill

date

in

t

ext

Requesting

Team

Producing

Mgmt

Current

Mgmt

Business

Mgmt

External

Resource

Mgmt

Senior

Mgmt

no

yes

STOP

Ext.

Proc.

none

ext

int

Resolve

Copy

Team

s

yes

STOP

Gen

Req Review Agree
no

log

track

notif

y

Budget

fill

date

fill

date

fill

date

in

t

ext

Requesting

Team

Producing

Mgmt

Current

Mgmt

Business

Mgmt

External

Resource

Mgmt

Senior

Mgmt

no

yes

STOP

Ext.

Proc.

none

ext

int

Resolve

Copy

Team

s

Documentation Improvement

Model
Unification
Capability

Execution

yes

STOP

Gen

Req Review Agree
no

log

track

notif

y

Budget

fill

date

fill

date

fill

date

in

t

ext

Requesting

Team

Producing

Mgmt

Current

Mgmt

Business

Mgmt

External

Resource

Mgmt

Senior

Mgmt

no

yes

STOP

Ext.

Proc.

none

ext

int

Resolve

Copy

Team

s

RepositoriesVendor
Modeling Tools

Figure 2. Automated process management support.

Section two will present in general terms how a knowledge acquisition approach can be
applied to the development of automated tools for process management. We will discuss
the role and importance of mediating representations, a modeling framework for process
management, and the architecture of the DDUCKS environment. Section three specifically
describes eQuality, an application of DDUCKS to problems in process documentation,
process improvement, and process execution. Section four presents our conclusions.

2 A Knowledge Acquisition Approach for Process Management

Our approach to process management support systems springs from our many years of
work in knowledge acquisition for knowledge-based systems. Over the years, many of our
views on knowledge acquisition have changed. We used to think of knowledge acquisition
as something that occurred mainly in the early stages of system development. Now we
have come to realize that knowledge acquisition tools can assist in formulation, validation,
verification, and maintenance throughout the lifetime of a knowledge-based system. Thus,
it might be said that researchers are attempting to do for knowledge engineering what
CASE is attempting to do for traditional software engineering [10, 30, 63]. Indeed, as the
scope of application of knowledge acquisition work has broadened, lessons learned from
the development of traditional knowledge-based systems have been applied to hybrid
systems that combine conventional and knowledge-based components [e.g., 8. 14, 15, 32l.
Gaines [31] has suggested the term knowledge support systems for knowledge acquisition
tools capable of targeting wider applications such as information retrieval, education,
personal development, group decision support, and design rationale support. We think that
the knowledge acquisition perspective has much to offer for many kinds of problems.

In sections 2.1 and 2.2, we describe some aspects of the knowledge acquisition perspective
that have had an influence on eQuality. In particular we discuss knowledge acquisition as a
modeling activity, and examine the role of mediating representations in the process of
model formulation and refinement. Section 2.3 presents the system architecture and
explains how it provides for reusability of tools, models, and representations.

2.1 Knowledge Acquisition as a Modeling Activity

Recent work in knowledge acquisition has emphasized that the creation of knowledge
bases is a constructive modeling process, and not simply a matter of “expertise transfer” or
“knowledge capture” [26]. For this reason, use of the term conceptual modeling has begun
to replace the term knowledge acquisition to describe many of the activities in this field.

From a constructivist perspective, a model is not a ‘picture’ of the problem, but rather a
device for the attainment or formulation of knowledge about it [27, 50]. Often, the most
important outcome of a knowledge acquisition project is not the resulting knowledge-based
system, but rather the insights gained through the process of articulating, structuring, and
critically evaluating the underlying model [64]. From this, we infer that the value of the
knowledge acquisition effort may derive not simply from a final ‘correct’ representation of
the problem, but additionally from our success in framing the activity as a self-correcting
enterprise that can subject any part of the model to critical scrutiny, including our
background assumptions [79]. From this standpoint, the crucial question for knowledge
engineers is not “How do we know the model is correct?” (every model is an incorrect

oversimplification); but rather “How useful is the model (and the modeling process) in
facilitating our understanding of the domain?”

Our understanding of models and the modeling process entails a life cycle perspective on
knowledge acquisition. Modeling does not culminate at some arbitrary point in
development, but rather extends throughout the life of the system. It follows that modeling
tools must support the gradual evolution of the model through numerous cycles of
refinement.

Each phase of development activity imposes its own requirements and difficulties. Serious
problems of modeling can often be traced directly to the inadequacies of the particular
knowledge representations used at a given stage of development. Many tools are limited in
both their repertoire of modeling representations and their support for evolution and
transformation of representations. The ideal conceptual modeling tool would support a
smooth transition of the model from an easily communicated, relatively unconstrained
statement of the problem to an unambiguous specification of design. A number of changes
in representation may be required to accompany successive stages in model construction:
from mental models to increasingly refined conceptual models via elicitation and analysis
techniques, and eventually, from these highly elaborated models to an operational
knowledge base via formalization and implementation procedures [38].

Unfortunately, the emphasis given to rapid prototyping in traditional accounts of
knowledge acquisition, along with the faulty notion that ‘the production of working code is
the most important result of work done’, often leads to the premature encoding of
knowledge in an implementation formalism associated with a specific performance
environment [10]. The unfortunate result is that no independent description of the model
will exist other than the rule base itself and possibly some glossaries in the help
information of the system [49].

The problems of premature encoding of knowledge in implementation-driven
representations have spurred efforts to develop other representations that more adequately
support the early stages of conceptual modeling. We call these mediating representations.

2.2 Mediating and Intermediate Representations

Mediating representations (e.g., repertory grids, network diagrams) are designed to reduce
the problem of representation mismatch, the disparity between a person’s natural
description of the problem and its representation in some computable medium [43]. They
provide a bridge between verbal data and typical knowledge representation schemes such
as production rules [12, 49]. Work on mediating representations for conceptual modeling
parallels work on visual programming languages for software engineers [e.g., 40].

The term mediating representation has various interpretations in the literature, however we
take it to “convey the sense of… coming to understand through the representation” [49, p.
184]. A crucial feature is that mediating representations should be “easily readable by
those who were not involved in the original development programme…” (21, p. 34). This
is essential, since executable knowledge bases are seldom organized for direct use by
humans, but instead for the convenience of the reasoning mechanisms of the performance

environment. The design of a mediating representation, on the other hand, should be
optimized for human understanding rather than machine efficiency.

Work on mediating representations aims to improve the modeling process by developing
and improving representational devices available to the expert and knowledge engineer.
Several automated conceptual modeling tools have incorporated effective mediating
representations [13]. These tools to adopt one of two approaches. Either they contain
interfaces that bear a close resemblance in appearance and procedure to the original manual
task—for example, cancer-therapy protocol forms in OPAL [65] and engineering
notebooks in vmacs [55], or they rely on some easily-learned, generic knowledge
representation form—for example, repertory grids or directed graphs [7, 23, 28, 37, 52].

Over time the semantic gap between modeling systems and performance systems has
widened dramatically. A distinguishing characteristic of some of the newer tools is the
degree to which they promote the use of multiple perspectives on the same information.
They also exemplify the push toward informal textual, graphical, and multimedia forms of
knowledge representation [9, 23, 34, 35]. As new mediating representations have increased
the richness, complexity, and subtlety of the knowledge elicited by automated conceptual
modeling tools, a requirement has emerged for intermediate representations. Intermediate
representations can integrate the diverse perspectives presented by the mediating
representations. They help bridge the gulf between human participants and the
implementation formalism required by the performance environment. In addition,
intermediate representations facilitate the integration of conceptual modeling and
performance systems, allowing rapid feedback throughout the process of system
development [e.g., 36, 71, 59].

Figure 3 depicts a three-schemata approach to knowledge representation [27]. Mediating
representations serve as external schemata, the intermediate representation corresponds to
the conceptual schema, and the knowledge base or database implements an internal
schema. The external schemata are optimized for communication, the conceptual schema
for semantic completeness, and the internal schema for performance. Obvious similarities
will be seen between our suggested architecture for conceptual modeling tools and the
proposed ANSI-SPARC three-schema model for data management. The definitions for the
three schemata given by van Griethuysen and King (77) provide a good summary of this
perspective:

External Schemata Conceptual Schema Internal Schema

Intermediate
Representation

Knowledge/
Data Base

IF •••
 THEN •••

Mediating
Representations

Figure 3. Three-schemata architecture.

“The… conceptual schema controls what is described in the information base.
The conceptual schema controls the semantic meaning of all representations, that
is, defines the set of checking, generating, and deducing procedures of the
information at the conceptual level in the information system.

The external schemata describe how the users wish to have the information
represented. The external processor interfaces directly with the users and
coordinates their information exchange.

The internal schema describes the internal physical representation of the
information… The mapping between the external schemata and the internal
schema must preserve meaning as defined by the conceptual schema.”

This approach allows views containing mediating representations to be coupled to the
underlying intermediate representation so that any changes made to one view may be
immediately reflected in all related views. Knowledge analysis and performance tools may
be similarly designed to exploit the integration of information at the intermediate level.

2.3 An Architecture for Reusability of Tools, Models, and Representations

Because building conceptual modeling tools is labor intensive, their development can
usually be justified only if they can be easily applied to more than a single application.
Conceptual modeling tool developers interested in deriving the most benefit from their
tools may look for areas consisting of several problems that can each be characterized by a
general task model [6, 53]. Conceptual modeling tools can then be created that both fit the
general task model and are tailorable to several specific problems.

Many conceptual modeling tools derive their power from relying on a well defined
problem-solving model that establishes and controls the sequences of actions required to
perform some task [6, 43, 51, 53]. For example, SALT [61] is based on a method for
design called “propose-and-revise”, while MOLE [25] uses a method of heuristic

classification called “cover-and-differentiate”. More recently, researchers have developed
approaches that allow the knowledge engineer to configure systems from one or more
problem-solving mechanisms [13, 62, 66, 69]. The problem-solving mechanisms define the
kinds of knowledge applicable within each step, thereby making explicit the different roles
knowledge plays. Having defined these roles, developers can design modeling tools
appropriate to each kind of knowledge.

Musen [65] was one of the first to present an explicit, general approach to creating
tailorable conceptual modeling tools. Conceptual modeling tools are tailored using a meta-
level tool to edit a domain-independent conceptual model. The meta-level tool, PROTEGE,
provides a system to generate knowledge editors tailored for various classes of treatment
plans. Physician experts can then use the knowledge editors created by PROTEGE to
develop knowledge bases (e.g., OPAL) that encode specific treatment plans in their
medical specialty; the resulting systems (e.g., ONCOCIN) could then be used in turn by
attending physicians to obtain therapy recommendations for a particular patient.
PROTEGE-II generalizes the PROTEGE architecture to allow for alternate problem
solving methods and interface styles [68, 69].

Besides the reuse of task models, a number of researchers have emphasized the importance
of defining libraries of ontologies, with the goal of increasing knowledge base reusability
[45, 57, 66, 73]. Alexander, Freiling, Shulman, Rehfuss, and Messick [4] introduced
ontological analysis as a conceptual modeling technique for the preliminary analysis of a
problem-solving domain (see also 3, 81]. This kind of analysis results in a rich conceptual
model of static, dynamic, and epistemic aspects of the problem. The model can be
extended by designers and users of the system and applied to problem-solving. Well-
designed conceptual models can also be shared or reused by different tools and
applications.

Our objective is to increase reusability by generalizing Musen’s approach. We have
implemented an “open architecture” integrating environment that allows for a high degree
of connectivity among hardware and software components. This environment is called
DDUCKS (Decision and Design Utilities for Comprehensive Knowledge Support; 14,
15]1. It is useful to think of DDUCKS in terms of four “layers” of functionality:
workbench, shell, application, and consultation (Figure 4)2 . Starting with any layer in the
system, a user can produce a set of tools, models, ontologies, and representations that can
be used to assist in configuration of a more specialized system at the layer below.

The DDUCKS workbench consists of five major elements:

1 Either the first or second D in DDUCKS is silent, depending on whether one using the tool in a
decision or design context.

2 The four layers are simply a convenient abstraction that seem to apply to a number of applications. In reality,
application configuration and tailoring is a continuous rather than discrete process which admits an unlimited
number of “layers”.

• methodology-independent problem-solving task models (e.g., heuristic
classification, constraint satisfaction);

• generic interaction paradigms (see section 3.1 below; e.g., graph view, matrix
view, various widgets);

• a methodology-independent ontology (a specification of the abstract
conceptual schema; e.g., generic object types such as entity, relationship);

• application-configuration process models (i.e., model of how to configure the
workbench for a particular application such as process management, decision
support, or design);

• a standard library of inference types and functions (e.g., mathematical and
logical mechanisms that implement problem-solving, analysis, or simulation
procedures).

An instance of a shell (e.g., Axotl II), created by using the conceptual modeling facilities
generated by the workbench, may contain:

• methodology-specific problem-solving task models (e.g., maximization of

expected utility across decision alternatives, hierarchical constraint
satisfaction using extended AND-OR graphs, process optimization through
event-based simulation)

• methodology-specific mediating representations created out of the
combination of generic interaction paradigms with a particular semantic and
possibly computational interpretation of the elements (e.g., process views,
influence diagrams, repertory grids);

• a methodology-specific ontology (a specification of the schema itself; e.g.,
activities, performers; decision and chance nodes; elements and constructs);

• methodology-specific model-building process models (i.e., knowledge about
how to acquire application-specific knowledge within the context of a
methodology);

• methodology-specific extensions to the inference and function library.

Workbench

Shell

Application

Situation-Specific Model

Programming
Environment

Workbench
Builders

Methodology
Experts

Domain
Experts

Clients

Knowl. Modeling
Facilities

Client Support
Facilities

• Methodology- independent

 problem-solving task models

• Generic interaction paradigms

 and widgets

• Methodology-independent

 ontology (schema description

 primitives)

• Application-configuration

 process model

• Standard library of inference

 types and functions

• Application-specific problem-

 solving task models

• Application-specific mediating

 representations

• Application-specific ontology

 (modeling primitives)

• Application-specific model-

 building process model

• Extensions to inference and

 function library

• Situation-specific problem-solving task models

• Situation-specific mediating representations

• Situation-specific model components

• Situation-specific facts and assertions

• Situation-specific functions and inferences

• Methodology-specific

 problem-solving task models

• Methodology-specific

 mediating representations

• Methodology-specific

 ontology (schema)

• Methodology-specific

 model-building process model

• Extensions to inference and

 function library

Knowl. Modeling
Facilities

Figure 4. Four layers of functionality facilitate reusability (inspired by figure from Musen, 1989).

An instance of an application (e.g., eQuality), created by using the conceptual modeling
facilities generated by the shell, may contain:

• application-specific problem-solving task models;
• application-specific mediating representations (e.g., form-filling interfaces

tailored to R&D investment decision makers, engineering process modelers,
or space station designers that may be used in place of influence diagrams,
generic process views, or grids);

• an application-specific ontology (extensions to the schema that become the
modeling primitives for the application; e.g., go/no-go investment decision
nodes, technical risk chance nodes; airplane design-build activities;
alternatives and criteria);

• application-specific model-building process models (i.e., knowledge about
how to conduct a consultation with clients such as R&D investment decision
makers, airplane design-build process improvement team members, or space
station designers);

• application-specific extensions to the inference and function library.

An instance of a consultation, created by using the consultation facilities generated by the
application, may contain:

• situation-specific problem-solving task models (e.g., a model for a particular

business, design, or decision-making process).

• situation-specific mediating representations (e.g., text and graphical
annotation of views on the model);

• situation-specific model components (e.g., decision and chance nodes for a
particular project decision model; activity and entity instances for a particular
enterprise model; alternatives and criteria for a particular design decision);

• Situation-specific facts and assertions (e.g., particular information about a
situation);

• situation-specific functions and inferences.

The complete situation-specific model represents the unique characteristics of a particular
problem and comprises all the information mentioned above. This model is formulated,
evaluated, and analyzed during the consultation to produce recommendations for action or
for further model refinement.

3 eQuality: An Application of DDUCKS to Process Management

eQuality (enhanced Quality) is an application ofDDUCKS designed to support the
enterprise integration and process improvement through the application of advanced
modeling, analysis, and simulation tools. Process management methodologies provide a
way to specify design activities and products as part of an enterprise model. The enterprise
model captures the activities, resources, and organizational context of design from the
process owner’s point of view. It can also represent models of the structure of the products
of design, for analysis and simulation purposes. Figure 5 depicts the components of
eQuality as a set of project organization and meeting tools and six functional modules.

In the following three sections, we will describe the process documentation, process
improvement, and project organization capabilities of eQuality.

SKETCHPAD DOCUMENTER

ENTERPRISE MODELER

PROCESS ANALYZER
Static analysis to discover potential
bottlenecks and identify cost drivers

PROCESS SIMULATOR
Verify and validate process;
provide “what if” capability,
help in reformulating a process

PROCESS EXECUTOR
Tailor and operate process; provide
decision support, data access, integrated
measurement and machine learning

PROCESS MONITOR
Track and follow up on tasks, coordinate
interacting processes; notify of exception
conditions

P
ro

c
e

s
s

D
o

c
u

m
e

n
ta

ti
o

n
P

ro
c
e

s
s

Im
p
ro

v
e
m

e
n
t

P
ro

c
e

s
s

E
x
e

c
u

ti
o

n

PROJECT
ORGANIZATION

AND
MEETING

FACILITATION
TOOLS

Model processes and associated business
entities (e.g., organizations, resources,
products) at varying levels of abstraction

Record text and graphic information as
part of project planning, brainstorming,
and problem definition activities

Figure 5. Six functional modules and a set of project organization and meeting tools support
documentation, improvement, and execution phases of the life cycle.

3.1 Process Documentation.

Figure 6 is a view of knowledge representation in DDUCKS . The intermediate
representation in DDUCKS (i.e., the conceptual model) consists of entities, relationships,

and situations as the primary concepts, and domains, properties, and constraints as
secondary concepts. We are using an enhanced version of CODE version 4 as the
underlying semantic representation language [58, 74, 75]. We have derived our general
taxonomy for conceptual modeling from Tauzovich and Skuce, with extensions supporting
inferencing, analysis, and simulation.

CODE provides a rich, paradigm for the definition of knowledge level concepts. A
collection of integrated tools support the important and frequently overlooked aspects of
conceptual, ontological, and terminological analysis. Our extensions to the representation
allow the system to share several features of Sowa’s [76] conceptual graphs, and Gaines’
[33] KRS, which interpret taxonomic and entity-relationship structures in terms of typed
formal logics. A first order logic system and a simple natural language system, allow
various types of syntactic and semantic checks to be performed, if desired. A
comprehensive lexicon allows references to concepts to be automatically maintained and
quickly accessed Default facilities for analysis and inferencing over conceptual structures
can be augmented by users by means of an integrated scripting and query language.

User-interface management systems (UIMS) are becoming an essential part of interactive
tool development and end-user tailoring [48]. We are extending the capabilities of a
Smalltalk-80-based direct-manipulation user-interface builder to build a DDUCKS UIMS,
called Geoducks3 [56]Geoducks relies on the Smalltalk-80 MVC (model-view-controller)
concept for managing different perspectives on data ([2, 42, 54]. The MVC approach
provides an effective way to factor out the data in an underlying model from the data in
dependent views, so that new views can easily be added to an existing model. A
sophisticated dependency mechanism assures that changes to the model made within one
view are immediately reflected in all related views. Class hierarchy mechanisms in
Smalltalk-80 allow generic views of a certain sort to be easily specialized for different
purposes. This, in conjunction with additional capability in Geoducks, has allowed us to
define many different views on similar aspects of the model, as well as several similar
views on different aspects of the model.

The six views surrounding the intermediate representation correspond to the generic user-
interface interaction paradigms that are implemented as abstract “pluggable” view classes
(Krasner & Pope, 1988; Adams, 1988a, b). These views are generic in the sense that they
define the graphical form for the representation, but the form has no underlying semantics.
Within eQuality, various configurations of these interaction paradigms can be called up in
sketchpad mode to record free-form graphical and textual information. For example,
individuals and groups can capture back-of-the-envelope drawings, agendas, issues, action
items, requirements, and other information pertinent to their task. While not part of the
formal model, users can link elements created in sketchpad mode to elements in other
views in hypertext fashion.

3 Pronounced “gooey-ducks”.

List View

Matrix View

Graph View

Tree View

Text View

1.0. adfadfad afadfdadfadfad
afadfdadfadfad afadfd
 1.1. dafadfdafadsdfadfad
afadfdadfadfad afadfda
 1.1.1. dfadfadfaddfadfad
afadfdadfadfad afa
 1.1.2 adfaddfddfadfad
afadfdadfadfad afad
2.0. dafadfdfdfadfad afadfdadfadfad
afadfdadfad
3.0. afadfdaf fdadfadfad
afadfdadfadfad afadfd a
 3.1. dfadfadfadf ddfadfad
afadfdadfadfad afadfd
 3.1.1. adfadf fadf adfadfad
afadfdadfadfad afa

Outline View

adfa a adfa
adf
 adfad
fasdfa
afasdfasdfa
sd
adfadsfasdf
adfa a adfa
adf
 adfad
fasdfa
afasdfasdfa
sd
adfadsfasdf

adfa a adfa
adf
 adfad
fasdfa
afasdfasdfa
sd
adfadsfasdf
adfa a adfa
adf
 adfad
fasdfa
afasdfasdfa
sd
adfadsfasdf
afddasf

adfa a adfa
adf
 adfad
fasdfa
afasdfasdfa
sd
adfadsfasdf
adfa a adfa
adf
 adfad
fasdfa
afasdfasdfa
sd
adfadsfasdf
afafafa faf

adfa a adfa adf adfad fasdfa afasdfasdfasd
adfadsfasdf adfa a adfa adf adfad fasdfa
afasdfasdfasd adfadsfasdf adfa a adfa adf adfad
fasdfa afasdfasdfasd adfadsfasdf adfa a adfa adf.

adfa a adfa adf adfad fasdfa afasdfasdfasd
adfadsfasdf adfa a adfa adf adfad fasdfa
afasdfasdfasd adfadsfasdf adfa a adfa adf adfad
fasdfa afasdfasdfasd adfadsfasdf adfa a adfa adf
adfa a adfa adf adfad fasdfa afasdfasdfasd
adfadsfasdf adfa a adfa adf adfad fasdfa
afasdfasdfasd adfadsfasdf adfa a adfa adf adfad
fasdfa afasdfasdfasd adfadsfasdf adfa a adfa adf

Intermediate
Representation

Entity

Relationship

Situation

Domain

Property

Constraint

Repertory Grid View

Trade Study Matrix View

Spreadsheet View

Text Annotation View

Text Report View

Attribute View

Relationship View

Agenda View

Process View

Entity-Relationship View

Influence Diagram View

Version View

Decomposition Tree View

Type Hierarchy Tree View

Property Hierarchy Tree View

Activity Graph View

Distribution Tree View

Rule/Fact View

Decomposition Outline View

Type Hierarchy Outline View

Property Hierarchy Outline View

Project Notebook View

Interaction Paradigms
Mediating

Representations
Mediating

Representations

Figure 6. The intermediate representation in DDUCKS, surrounded by examples of generic
interaction paradigms, and mediating representations.

By combining one or more of these generic interaction paradigms with a semantics defined
in the intermediate representation and (for some representations) the problem-solving
method, methodology-specific or application-specific mediating representations are
defined. Mappings are defined between graphical actions in the model views and
operations on logical entities, relationships, and properties in the intermediate
representation. For example, influence diagrams combine a graph view with the concepts
of decision, chance, and value nodes and the problem-solving method of maximization of
expected utility across decision alternatives. Trade study matrices (a methodology-specific
kind of repertory grid) are built out of a matrix view, the concepts of alternatives, criteria,
and ratings, and a heuristic classification problem-solving method. Process views combine
a graph view with the a formal definition of activities and relationships between them.
Type definition views allow the users to extend the built-in ontology. Configured with
semantic information, these mediating representations can operate inmodel mode,
portraying different perspectives on the formal conceptual model in the intermediate
representation. By virtue of the Smalltalk-80 model-view-controller paradigm, consistency
is continuously maintained for all model views portraying the same version of the
conceptual model.

3.2 Process Improvement

In parallel with development of process documentation tools, we are building analysis and
simulation capability supporting process improvement. Simple drawing tools typically
available to process improvement teams provide no support for analysis and simulation.
Traditional analysis and simulation tools support alternatives analysis and richer models,
but require a significant amount of training and data entry to achieve realistic results.
eQuality is unique in that it addresses the needs of individuals who know a lot about their
domain, but do not know very much about formal modeling. People do not have to worry
about the simulation when they are creating various diagrams. However when they are
ready, the system can use the information contained in the diagrams to support analysis and
simulation.

Analysis tools within eQuality support the identification of bottlenecks, cost drivers, and
the restructuring of processes to exploit concurrency. In addition to formal analysis, built-
in knowledge-based system tools can provide support for heuristic analysis. Users can
implement analysis metrics such as cycle time, defects per unit of output, and financial
parameters using attribute and function editors that make use of a simple scripting
language and extensible function library. Using MANIAC, we have developed an initial
‘hot link’ capability with Microsoft Excel™ that will increase the power and flexibility of
the analysis tools.

Discrete-event simulation tools build on the analysis capabilities to provide insight on the
dynamic behavior of the enterprise. Users can define active monitors during a running
simulation to display results. The monitors selectively respond to changes in the model and
dynamically display the results in an appropriate way. For example, a textual event monitor
would print out a textual message that described a simulation event, while a graphical
monitor such as a histogram or bar gauge might plot the number of occurrences of an event
or the value of a parameter.

3.3 Process Execution

An eventual goal is to couple the streamlined enterprise models to the enterprise itself,
supplying the semantic transformations that map the models to the enterprise and
incorporating feedback from the enterprise concerning the actual execution of the models.
We envision integrated process management technology that will someday enable us to
move from the current situation where process documentation, if it exists at all, is
represented on paper in three-ring binders and control room wall charts; to the near term
where models of important processes can be available online in a form amenable to
analysis and simulation; to the vision where ‘live’ process models are woven into the fabric
of the way we perform out business. Enterprise models will never be kept up to date
properly when they can only be maintained by modeling experts. Enterprise models will
never be consistent with the way processes are actually performed until the model actually
becomes executable.

We are currently prototyping future possibilities for process execution. To support this, a
future release of eQuality could produce a form of the enterprise model that can be fed into
planning, scheduling, and project management software and linked to relevant data and
applications. Process instances could be created each time a process is executed, with
status maintained in a repository. Process participants could receive knowledge-based help
in carrying out their tasks as the process is executed. An intelligent agent could monitor the
activity of the process, notifying process participants of exception conditions and helping
to route data associated with the task. Decision analysis capability could help process
participants deal with decisions involving high stakes, difficult tradeoffs, or critical
uncertainties or risks. Data collected by monitors operating during the execution of the
process could be fed back into eQuality and used as the basis for further process
improvement.

3.4 Project Organization and Meeting Facilitation Tools

Creating a description of an enterprise typically involves the collection, organization, and
refinement of a large body of documentation that may include reports, transcripts,
glossaries, photographs, diagrams and various representations of formal models. Process
improvement team members draw from this evolving corpus as they construct an enterprise
model. Effective documentation is more useful during operation of the process before than
during the process improvement phase [9]. If they are effectively designed and kept up-to-
date, the sketchpad documentation and the enterprise model may later be reused for
operations, diagnosis, maintenance and as the basis for improving similar processes in the
future. However, the documentation currently produced by process improvement teams is
often shallow, scattered, obsolete, incomplete, contradictory, or unintelligible, making
maintenance and reuse of the knowledge difficult.

Figure 7. Screen snapshot of the project notebook facility.

The volume and diversity of information that can be represented in eQuality drives a
requirement for ways to manage, organize, and link that information. A project notebook
facility helps team members collect and organize the diverse materials associated with a
particular process improvement project (Figure 7). It also helps manage changes between
different versions and views of the model as it evolves. The project notebook can assist in
planning and modeling activities throughout the life of the project. Using project notebook
templates, groups can tailor the contents of the boiler plate project notebook to be
consistent with their own preferences for accessing, viewing, and using the information.
For example, a process improvement team’s blank notebook can come pre-configured with
information about organizational standards (e.g., default set of concept types and
relationships, standard icons and terms for concepts, reporting forms) and procedures (e.g.,
required steps in a project plan), just as a real notebook could be pre-loaded with labeled
dividers and forms. In addition to its obvious use in managing information about the
enterprise model and views, the project notebook supports the team as a simple computer-
supported meeting facilitation tool and as a form of group memory.

3.5 Project Status

eQuality was originally implemented within a version of a Boeing-produced shell called
Axotl [11, 14, 15] Axotl was developed on the Apple Macintosh and runs on all platforms
that support ParcPlace Smalltalk-80 (e.g., Sun3 and SPARCstations, Apollo workstations,
Hewlett-Packard series 300 and 400 systems, IBM '386 compatibles, IBM RS/6000,
DECstations). From March to December 1991, a version of eQuality, containing sketchpad
tools, project organization tools, limited enterprise modeling capability, and a set of
prototypical analysis and simulation tools was evaluated at several sites within Boeing.
Applications included finance, concurrent engineering, manufacturing, corporate internal
audit, continuous quality improvement, and information system requirements analysis.
Customers at these evaluation sites have used the software in each of their unique settings,
and have provided valuable comments to guide future development directions. Based on
results of the evaluation, we designed and developed a completely new version of the Axotl
II shell as a host for general release of eQuality within The Boeing Company. The first
general Boeing release of the documentation capability was made in April 1992.
Development and evaluation of analysis and simulation capability will follow.

As part of a Boeing project called DIS (Design of Information Systems; Benda, 1991), we
explored how knowledge acquisition and decision support tools can work cooperatively
with one another and with commercial applications such as spreadsheets, databases, or
hypermedia software. We described how such integrated tools could be used for
applications such as group decision support in a computer-supported meeting environment
[8]. We have developed a facility called MANIAC (MANager for InterApplication
Communication) that supports intelligent communication and cooperation between
applications. Plans for coordination among applications are modeled and executed using
integrated planner capabilities in Axotl, while MANIAC provides the infrastructure for the
actual message passing. Originally implemented as a driver in the 6.x version of the
Macintosh operating system, MANIAC has been updated to take advantage of new
interapplication communication protocols in version 7.0 (Apple events or Mac DDE for
Microsoft applications). An interface to TCP/IP has been built so that we will eventually be
able to transparent support for heterogeneous platforms in a networked environment.

4 Conclusions

We attribute much of the initial success of eQuality to the knowledge acquisition outlook.
In focusing on process management rather than the development of a traditional
knowledge-based system, we have seen even more acutely the need for modeling tool
developers to attend to the ‘acquirability’ and reusability aspects of design. We conclude
with the words of David Parnas on traditional software specification, which apply equally
well to knowledge acquisition:

“The word ‘formal’ has been commandeered by a bunch of people who feel that
it isn’t formal if human beings can read it… I have fallen into the same trap. I
could write something and I could read it but my students couldn’t. And they
could write something and they could read it but I couldn’t. And, not only that,
but neither of us wanted to read it. … Therefore I have worked on new ways to
write specifications so that people could read it… You can’t imagine how

overjoyed I was when a pilot told me we had made a mistake with the A7
[avionics software specified in an earlier project] — not because we made a
mistake but because the pilot could tell us.” [67]

It is our hope that a continued discussion and work on extending knowledge acquisition
concepts and tools to additional areas of application will contribute to better
communication and shared understanding between participants in system development.

Acknowledgements

We express our appreciation to Mike Anderson, Miroslav Benda, Kathleen Bradshaw,
Beverly Clark, Jim Fulton, Cindy Holm, Earl Hunt, William Jones, Sharon Kipersztok,
Cathy Kitto, Joe Koszarek, Tim Lethbridge, Allen Matsumoto, Steve Poltrock, Peter
Russo, Bob Schneble, Doug Schuler, Kish Sharma, Dave Shema, Bruce Wilson, and Jack
Woolley for their contributions and support. We also thank members of Boeing
organizations who provided extensive feedback and suggestions on eQuality prototypes.
This work has benefitted from discussions with John Boose, Guy Boy, Ken Ford, Brian
Gaines, Mildred Shaw, and Doug Skuce, as well as numerous colleagues in the knowledge
acquisition community. Stan Covington developed and helped conceptualize the first
eQuality prototype. Axotl II, eQuality, and DDUCKS have been developed at the Boeing
Computer Services Computer Science organization.

References
1. Adams, S.S. (1988b). MetaMethods: Active values. HOOPLA!, 1(1),.3-6.
2. Adams, S.S. (1988b). MetaMethods: The MVC paradigm. HOOPLA!, 1(4), July, 5-6,

13-21.
3. Akkermans, H., Van Harmelen, F., Schreiber, G. & Wielinga, B. (1992). A formalization

of knowledge-level models for knowledge acquisition. In K. Ford & J. Bradshaw
(Eds.), special knowledge acquisition issue of the International Journal of Intelligent
Systems, in press. Also to appear in K. Ford & J.M. Bradshaw (Eds.), Knowledge
Acquisition as a Modeling Activity. New York: John Wiley, volume in preparation.

4. Alexander, J.H., Freiling, M.J., Shulman, S.J., Rehfuss, S. & Messick, S.L. (1988).
Ontological analysis: An ongoing experiment. In J.H. Boose & B.R. Gaines (Eds.),
Knowledge Acquisition Tools for Expert Systems. London: Academic Press.

5. Benda, M. (1991). Design of information systems: Towards an engineering discipline.
Boeing Computer Services Technical Report. Seattle, WA: Boeing Computer
Services, Computer Science Organization.

6. Boose, J.H. (1989). A survey of knowledge acquisition techniques and tools. Knowledge
Acquisition Journal, 1, 3-37.

7. Boose, J.H. & Bradshaw, J.M. (1987). Expertise transfer and complex problems: Using
Aquinas as a knowledge-acquisition workbench for knowledge-based systems.
International Journal of Man-Machine Studies, 26, 3-28. Also in J. Boose and B.
Gaines (Eds.), Knowledge Acquisition Tools for Expert Systems. London: Academic
Press, pp. 39-64.

8. Boose, J.H., Bradshaw, J.M., Koszarek, J.L. & Shema, D.B. (1992). Better group
decisions: Using knowledge acquisition techniques to build richer decision models.
Proceedings of the 1992 Hawaii International Conference on Systems Sciences,
January.

9. Boy, G.A. (1991). Indexing hypertext documents in context. Proceedings of the Third
ACM Conference on Hypertext, San Antonio, TX, December 15-18.

10. Bradshaw, J. M. & Boose, J.H. (1989). Knowledge acquisition as CASE for
knowledge-based systems. Presentation at the Third International Workshop on
Computer-Aided Software Engineering (CASE-89), London, July.

11. Bradshaw, J. M. & Boose, J.H. (1990). Decision analysis techniques for knowledge
acquisition: Combining information and preferences using Aquinas and Axotl.
International Journal of Man-Machine Studies, 32(2): 121-186. Also in J.H. Boose
and B.R. Gaines (Eds.), Progress in Knowledge Acquisition for Knowledge-Based
Systems. London: Academic Press.

12. Bradshaw, J.M. & Boose, J.H. (1992). Mediating representations for knowledge
acquisition. Manuscript submitted to the AAAI 1992 Reasoning with Diagrammatic
Representations Session of the Spring Symposium, Stanford, CA, March.

13. Bradshaw, J.M., Ford, K.M., Adams-Webber, J.R. & Boose, J.H. (1992). Beyond the
repertory grid: New approaches to constructivist knowledge acquisition tool
development. In K. Ford & J. Bradshaw (Eds.), special knowledge acquisition issue of
the International Journal of Intelligent Systems, in preparation. Also to appear in K.
Ford & J.M. Bradshaw (Eds.), Knowledge Acquisition as a Modeling Activity. New
York: John Wiley, volume in preparation.

14. Bradshaw, J.M., Covington, S.P., Russo, P.J. & Boose, J.H. (1990). Knowledge
acquisition for intelligent decision systems: Integrating Aquinas and Axotl in
DDUCKS. In M. Henrion, R. Shachter, L.N. Kanal, & J. Lemmer, Uncertainty in
Artificial Intelligence 5, Amsterdam: Elsevier, 1990.

15. Bradshaw, J. M., Covington, S. P., Russo, P. J., and Boose, J. H. (1991). Knowledge
acquisition techniques for decision analysis using Axotl and Aquinas, Knowledge
Acquisition Journal, 3(1), 49-77.

16. Bradshaw, J.M., Ford, K.M. & Adams-Webber, J. (1991). Knowledge representation
for knowledge acquisition: A three-schemata approach. Proceedings of the Sixth Banff
Knowledge Acquisition Workshop, Banff, Canada, October.

17. Burkhart, R., Dickson, S., Hanna, J., Perez, S., Sarris, T., Singh, M., Sowa, J. &
Sundberg, C. (1991). IRDS Conceptual Schema Working Paper, October 18.

18. Clancey, W.J. (1990). Implications of the system-model-operator metaphor for
knowledge acquisition. In H. Motoda, R. Mizoguchi, J. Boose, & B. Gaines (Eds.)
Knowledge Acquisition for Knowledge Based Systems. Amsterdam: IOS Press.

19. Covington, S.P. & Bradshaw, J.M. (1989). eQuality Needs and Alternatives Survey.
Seattle, WA: Boeing Computer Services, Computer Science Organization.

20. Daniels, R.M., Dennis, A.R., Hayes, G., Nunamaker, J.F. & Valacich, J. (1991).
Enterprise Analyzer: Electronic support for group requirements elicitation. IEEE , 43-
52.

21. Diaper, D. (1989). Designing expert systems—from Dan to Beersheba. In D. Diaper
(Ed.) Knowledge Elicitation: Principles, Techniques and Applications. New York:
John Wiley.

22. Edwards, J. (1991). Ptech Overview Presentation. Westborough, MA: Associative
Design Technology.

23. Eisenstadt, M., Domingue, J., Rajan, T. & Motta, E. (1990). Visual knowledge
engineering. IEEE Transactions on Software Engineering, 16(10), October, 1164-
1177.

24. Eliot, L.B. (1991). Playing the top 20. AI Expert, 6(7), 11-12.

25. Eshelman, L. (1988). MOLE: A knowledge acquisition tool for cover-and-differentiate
systems. In S. Marcus (ed.), Automating Knowledge Acquisition for Expert Systems.
Boston, Massachusetts: Kluwer Academic Publishers.

26. Ford, K. & Bradshaw, J.M. (Eds.), Knowledge Acquisition as a Modeling Activity.
New York: John Wiley, volume in preparation.

27. Ford, K., Bradshaw, J.M. , Adams-Webber, J.R. & Agnew, N. (1992). Knowledge
acquisition as a constructivist modeling activity. In K. Ford & J. Bradshaw (Eds.),
special knowledge acquisition issue of the International Journal of Intelligent Systems,
in preparation. Also to appear in K. Ford & J.M. Bradshaw (Eds.), Knowledge
Acquisition as a Modeling Activity. New York: John Wiley, volume in preparation.

28. Ford, K.M., Stahl, H., Adams-Webber, J.R., Cañas, A.J.., Novak, J. & Jones, J.C.
(1991). ICONKAT: An integrated constructivist knowledge acquisition tool.
Knowledge Acquisition Journal, 3(2), 215-236.

29. Fulton, J.A., Zimmerman, J., Eirich, P., Burkhart, R., Lake, G.F., Law, M.H., Speyer,
B. & Tyler, J. (1991). The Semantic Unification Meta-Model: Technical Approach.
Report of the Dictionary/Methodology Committee of the IGES/PDES Organization,
ISO TC184/SC4. Draft 0.4, September 25, 1991.

30. Gaines, B.R. (1988). Software engineering for knowledge-based systems. Proceedings
of the Second International Workshop on Computer-Aided Software Engineering.

31. Gaines, B. R. (1989). Design requirements for knowledge support systems,
Proceedings of the Fourth Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, October, pp. 12.1-20.

32. Gaines, B. R. (1990a). Knowledge acquisition based on an open-architecture
knowledge representation server, Proceedings of the AAAI-90 Workshop on
Knowledge Acquisition: Practical Tools and Techniques, Boston, July.

33. Gaines, B.R. (1991) Empirical investigation of knowledge representation servers:
Design issues and applications experience with KRS. AAAI Spring Symposium:
Implemented Knowledge Representation and Reasoning Systems. pp. 87-101.
Stanford (March)—also SIGART Bulletin 2(3) 45-56.

34. Gaines, B.R. (1990b). An architecture for integrated knowledge acquisition systems.
Proceedings of the Fifth AAAI-Sponsored Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Canada, November.

35. Gaines, B.R. & Boose, J.H. (1991). Standards requirements, sources, and feasibility in
knowledge acquisition.Working notes of the AAAI Workshop on Standards in Expert
Systems. Anaheim, CA: July 14.

36. Gaines, B.R. & Rappaport, A.T. (1989). The automatic generation of classes, objects
and rules at the interface between knowledge acquisition tools and expert system
shells. IJCAI-89 Workshop on Knowledge Acquisition: Practical Tools and
Techniques, Detroit, Michigan, August 1989.

37. Gaines, B.R. & Shaw, M.L.G. (1986). Interactive elicitation of knowledge from
experts. Future Computing Systems, 1(2).

38. Gaines, B.R., Shaw, M.L.G. & Woodward, J.B. (1992). Modeling as a framework for
knowledge acquisition methodologies and tools. In K. Ford & J. Bradshaw (Eds.),
special knowledge acquisition issue of the International Journal of Intelligent Systems,
in preparation. Also to appear in K. Ford & J.M. Bradshaw (Eds.), Knowledge
Acquisition as a Modeling Activity. New York: John Wiley, volume in preparation.

39. Genesereth, M. R. & Fikes, R. (1991). Knowledge Interchange Format Version 2.2
Reference Manual. Logic Group Report, Logic-90-4. Stanford, CA: Stanford
University Department of Computer Science, March.

40. Gilnert, E.P. (1990). (Ed.) Visual Programming Environments: Paradigms and
Systems. Los Alamitos, California: IEEE Computer Society Press.

41. Goldberg, A.T. (1986). Knowledge-based programming: A survey of program design
and construction techniques. IEEE Trans. Software Eng., 12, 752-768.

42. Goldberg, A. (1990). Information models, views, and controllers. Dr. Dobb’s Journal,
July, 1-4.

43. Gruber, T.R. (1989). The Acquisition of Strategic Knowledge. New York: Academic
Press.

44. Gruber, T.R. (1990). Justification-based knowledge acquisition. In H. Motoda, R.
Mizoguchi, J. Boose, & B. Gaines (Eds.) Knowledge Acquisition for Knowledge Based
Systems. Amsterdam: IOS Press.

45. Gruber, T.R. (1991a). The role of common ontology in achieving sharable, reusable
knowledge bases. Stanford Knowledge Systems Laboratory Report No. KSL 91-10,
February. To appear in J.A. Allen, R. Fikes, and E. Sandewall (Eds.), Principles of
Knowledge Representation and Reasoning: Proceedings of the Second International
Conference. San Mateo, CA: Morgan Kaufmann.

46. Gruber, T. (1991b). Ontolingua: A mechanism to support portable ontologies. Stanford
Knowledge Systems Laboratory Technical Report KSL 91-66. Stanford, CA: Stanford
University Department of Computer Science.

47. Hammer, M. (1990). Reengineering work: Don’t automate, obliterate. Harvard
Business Review, July-August, 104-112.

48. Hix, D. (1990). Generations of user-interface management systems. IEEE Software,
September, 77-87.

49. Johnson, N. E. (1989). Mediating representations in knowledge elicitation. In D.
Diaper (Ed.) Knowledge Elicitation: Principles, Techniques and Applications. New
York: John Wiley.

50. Kaplan, A. (1963). The Conduct of Inquiry. New York: Harper and Row.
51. Karbach, W., Linster, M. & Voss, A. (1990). A confrontation of models of problem

solving. Knowledge Acquisition Journal, in press.
52. Kelly, G. A. (1955). The Psychology of Personal Constructs. 2 volumes. New York:

Norton.
53. Klinker, G. (1989). A framework for knowledge acquisition. Proceedings of the Third

Annual European Knowledge Acquisition Workshop, Paris, France, July.
54. Krasner, G.E. & Pope, S.T. (1988). A cookbook for using the model-view-controller

user interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
August-September, 26-49.

55. Lakin, F. (1990). Visual languages for cooperation: A performing medium approach to
systems for cooperative work. In J. Galegher, R.E. Kraut, & C. Egido (Eds.),
Intellectual Teamwork: Social and Technological Foundations of Cooperative Work.
Hillsdale, N.J.: L. Erlbaum.

56. Laland, A., Novotny, R., Enzer, S. & Bortz, J. (1991). The TIGRE Programming
Environment. Santa Cruz, CA: TIGRE Object Systems.

57. Lenat, D.B. & Guha, R.V. (1990). Building Large Knowledge-based Systems.
Reading, MA: Addison-Wesley.

58. Lethbridge, T.C. (1991). Creative knowledge acquisition: An analysis. Proceedings of
the 1991 Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada, October.

59. Linster, M. & Gaines, B.R. (1990). Supporting acquisition and performance in a
hypermedia environment. Presentation at Terminology and Knowledge Engineering
Workshop, Oct.

60. Linster, M. & Musen, M. (1991). Use of KADS to create a conceptual model of the
ONCOCIN task. Proceedings of the Sixth AAAI Knowledge Acquisition for
Knowledge-based Systems Workshop, Banff, Canada, October.

61. Marcus, S. (1988). SALT: A knowledge acquisition language for propose-and-revise
systems. In S. Marcus (ed.), Automating Knowledge Acquisition for Expert Systems.
Boston, Massachusetts: Kluwer Academic Publishers.

62. Marques, D., Klinker, G., Dallemagne, G., Gautier, P., McDermott, J. & Tung, D.
(1991). More data on usable and reusable programming constructs. Proceedings of the
Sixth Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. Banff,
Canada, October 6-11.

63. McDermott, J., Dallemagne, G., Klinker, G., Marques, D. & Tung, D. (1990).
Explorations in how to make application programming easier. In H. Motoda, R.
Mizoguchi, J. Boose, & B. Gaines (Eds.) Knowledge Acquisition for Knowledge Based
Systems. Amsterdam: IOS Press.

64. Moore, E.A. & Agogino, A.M. (1987). INFORM: An architecture for expert-directed
knowledge acquisition. International Journal of Man-Machine Studies, 26, 213-230.

65. Musen, M. A. (1989). Automated Generation of Model-Based Knowledge-Acquisition
Tools. San Mateo, CA: Morgan Kaufmann.

66. Neches, R. , Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T. & Swartout, W.R.
(1991). Enabling technology for knowledge sharing.AI Magazine, Fall, 36-55.

67. Parnas, D. (1991). The use of formal methods for computer system documentation.
Quoted in Software Maintenance News, 9(5), May, 29.

68. Puerta, A., Egar, J., Tu, S. & Musen, M. (1991). A multiple-method knowledge-
acquisition shell for the automatic generation of knowledge-acquisition tools. Stanford
Knowledge Systems Laboratory Report KSL-91-24. Proceedings of the Sixth Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, 6-11.

69. Puerta, A., Egar, J., Tu, S. & Musen, M. (1992). Modeling tasks with mechanisms. In
K. Ford & J. Bradshaw (Eds.), special knowledge acquisition issue of the International
Journal of Intelligent Systems, in preparation. Also to appear in K. Ford & J.M.
Bradshaw (Eds.), Knowledge Acquisition as a Modeling Activity. New York: John
Wiley, volume in preparation.

70. Rich, C. & Waters, R.C. (1987). Artificial intelligence and software engineering. In
W. E. L. Grimson and R.S. Patil (Eds.) AI in the 1980s and Beyond: An MIT Survey.
Cambridge, MA: The MIT Press.

71. Shema, D.B. & Boose, J.H. (1988). Refining problem-solving knowledge in repertory
grids using a consultation mechanism. International Journal of Man-Machine Studies,
29, 447-460.

72. Shrontz, F. (1990). Continuous quality improvement. Manager: A Publication of the
Boeing Management Association, 9(2), March-April, 4-5.

73. Skuce, D. (1991a). A review of ‘Building large knowledge based systems’ by D. Lenat
and R. Guha. Artificial Intelligence, in press.

74. Skuce, D. (1991b). A frame-like knowledge acquisition integrating abstract data types
and logic. In J. Sowa (Ed.), Principles of Semantic Networks. San Mateo, CA:
Morgan Kaufmann.

75. Skuce, D. (1991c). A wide spectrum knowledge management system. Knowledge
Acquisition Journal, in press.

76. Sowa, J.F. (1991). Toward the expressive power of natural language. In J. Sowa (Ed.),
Principles of Semantic Networks. San Mateo, CA: Morgan Kaufmann.

77. van Griethusen, J.J. & King, M.H. (Eds.) (1985). Assessment guidelines for
conceptual schema language proposals (ISO TC97/SC21/WG5-3), August.

78. Webster, D.E., (1988). Mapping the design information representation terrain. IEEE
Computer Magazine, December, 8-23.

79. Weimer, W. (1979). Notes on the Methodology of Scientific Research. Hillsdale, New
Jersey: Erlbaum.

80. Wiederhold, G., Finin, T. & Fritzson, R. (1991). KQML: Partial report on a proposed
knowledge acquisition language for intelligent applications, September 6.

81. Wielinga, B.J., Schreiber, A.Th. & Breuker, J.A. (1991). KADS: A modeling approach
to knowledge engineering. Knowledge Acquisition , in press.

