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The complexity of modern engineered systems motivates the require-
ment for timely access to technical and operational documentation
(Boy 1991, 1992). Documents are both the most valuable and the most

expensive knowledge resource in engineering organizations (Carter 1992).
Product and product-related documents may be intended for use by thousands
of people over a life cycle of many years (Nelson and Schuler 1995; Malcolm,
Poltrock, and Schuler 1991). Designers, engineers, operators, maintenance
technicians, suppliers, and subcontractors often require access to the same doc-
uments, but for different purposes and with different perspectives and termi-
nology. Because documentation specialists cannot anticipate all the circum-
stances and questions that may arise, they try to organize and index text,
graphic, and multimedia in a context-free manner. People, however, resist
reading manuals that describe system features in a task-neutral way (Rettig
1991) Instead they use information retrieval strategies that are context-depen-
dent (Mathé and Chen 1994; Boy and Mathé 1993; Boy 1991). For example,
they remember that information about the diameter of a particular rivet was
(or was not) relevant to the selection of a tool for repairing the fuselage. They
organize their work by posting frequently-referred-to pages of a maintenance
manual in prominent places in their work area, thus exploiting situational
knowledge not available to the manual’s original authors. 

Agents for Technical Information 
Management and Delivery

The rapidly growing amount and complexity of information available has com-
pounded the problems of technical information delivery. Until relatively recent-



ly, computing resources were so scarce and the bandwidth of human-computer
interaction so low that every effort was made to increase access to online infor-
mation (Nelson 1980). Now the amount of data that can be manipulated is so
overwhelming and the barriers to access so much more permeable that we need
to be seriously concerned about how to actively, selectively keep only the most
relevant information at the forefront of user interaction.

The Promise of Software Agents

Software agents have been proposed as one way to help people better cope with
the increasing volume and complexity of information and computing resources.
Researchers are hopeful that this approach will help restore the lost dimension
of individual perspective to the content-rich, context-poor world of the next
decade. As Paul Saffo ((1994) expresses it:

It is not content but context that will matter most a decade or so from now. The
scarce resource will not be stuff, but point of view…. The future belongs to neither
the conduit nor content players, but those who control the filtering, searching, and
sense-making tools we will rely on to navigate through the expanses of cy-
berspace… Without a doubt, the agent arena will become a technological battle-
ground, as algorithms rather than content duel for market dominance. 

What will such agents do? At the user interface, they will work in conjunc-
tion with component integration frameworks to select the right data, assemble
the needed components, and presentand format the information in the most ap-
propriate way for a specific user and situation. Behind the scenes, additional
agents will take advantage of distributed object management, database, docu-
ment management, workflow, messaging, transaction, searching, indexing, and
networking capabilities to discover, link, and securely access the appropriate
data and services. Documents assembled through the use of such agents are
termed “virtual” because they may never have existed as such until the moment
they were dynamically composed and presented through the current “informa-
tion lens.” They are termed “adaptive” because the tools, content, and user in-
terface learn to tailor themselves over time to the requirements of particular
users and situations (Browne, Totterdell, and Norman 1990).

A variety of agent theories, architectures, languages, and implementations
have been proposed.1 Simple script-based agents have proven themselves useful
in repetitive administrative tasks; more complex procedural agents have been
applied to applications such as systems or network management (Reinhardt
1994; Richman 1995). Additional agent work has focused on areas such as Inter-
net resource discovery and information integration (Brown et al. 1995; Etzioni
and Weld 1995, 1994; Knoblock and Ambite 1997; Woelk, Huhns, and Tomlin-
son 1995; Bowman et al. 1994; Virdhagriswaran 1994; and Wiederhold 1992),
intelligent coordination of distributed problem-solvers (Genesereth 1997; Kuok-
ka and Harada 1995; Tambe et al. 1995; Hanks, Pollack, and Cohen 1993;
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Gassero 1991; and Hewitt and Inman 1991; Finin, Labrou, and Mayfield 1997;
O’Hare and Jennings 1996), and active user assistance (Ball et al. 1997; Boy 1997;
Maes 1997; Malone, Grant, and Lai 1997; Riecken 1997; and Cypher 1993). Yet
other agent implementations are beginning to appear that will enable mobile
agents to perform business transactions in a safe and secure manner (Wayner
1995; White 1997). In contrast, the use of agents for context-dependent assembly
of virtual documents from distributed information is a relatively new research
area. The initial impetus has come from the explosion of distributed informa-
tion on the public Internet (Bowman et al. 1994) and is now being recognized as
a requirement for business organizations needing more flexible and dynamic
access to private sources of heterogeneous, distributed information.

Lack of Semantics and Extensibility of Communication Languages

While several approaches to agent technology are showing significant promise,
many critical issues remain unsolved. For one thing, agents created within one
agent framework can seldom communicate with agents created within another.

KQML has been proposed as a standard communication language for distribut-
ed agent applications (Finin 1997, Labrou and Mayfield 1997; Genesereth 1997).
The core concept is that agents communicate via “performatives,” by analogy
with human performative sentences and speech acts (e.g., “I hereby request you
to send me file ABC.TEX”). Unfortunately, KQML developers have not yet reached
full consensus on many issues. Agent designers are free to add new types of per-
formatives to the language. However, there exist a number of confusions in the
set of performatives supplied by KQML and no constraints are provided to agent
designers on what can be a performative (Cohen and Levesque 1997). These
problems are compounded as agent communication language designers are in-
creasingly concerned with policies for full agent conversations, rather than sim-
ple one-way exchange at individual performatives (Labrou 1996). 

Without a clearly-defined semantics of individual performatives as they are
employed within particular types of agent-to-agent dialogue, developers cannot
be sure that the communication acts their agents are using will have the same
meaning to the other agents with whom they are communicating. Such a se-
mantics is needed to determine the appropriateness of adding new performa-
tives to a particular agent communication language, and to define their relation-
ship to preexisting ones.

Lack of Infrastructure, Scalability, and Security

In addition to the current limitations of agent communication languages, the
potential for large-scale, cross-functional deployment of general purpose agents
in industrial and government settings has been hampered by insufficient
progress on infrastructural, architectural, security, and scalability issues. Con-
siderable research has been done on these issues by the distributed computing
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community, and in some cases commercial products exist that could address
many of them, yet up till now relatively little effort has been made to incorpo-
rate these technologies into agent development frameworks.

The current lack of standards and supporting infrastructure has prevented the
thing most users of agents in real-world applications most need: agent interoper-
ability (Gardner 1996; Virdhagriswaran, Osisek, and O’Connor 1995). A key
characteristic of agents is their ability to serve as universal mediators, tying to-
gether loosely-coupled, heterogeneous components—the last thing anyone wants
is an agent architecture that can accommodate only a single native language and
a limited set of proprietary services to which it alone can provide access.

To address some of these problems, we are developing KAoS (Knowledge-
able Agent-oriented System), an open distributed architecture for software
agents. Although the framework is still far from complete, our experience with
KAoS to date leads us to believe that an approach of this type can become a
powerful and flexible basis either for implementing or integrating diverse types
of agent-oriented systems. The following section provides the background of
KAoS. We then present the aims and major components of the KAoS architec-
ture: agent structure, dynamics, and properties; the relationship between agents
and objects; and the elements of agent-to-agent communication. Following this,
we briefly summarize our experience in building KAoS applications and discuss
issues and future directions.

KAoS Background

KAoS grows out of work beginning in 1988 on a general purpose interapplica-
tion communication mechanism for the Macintosh called MANIAC (Manager for
InterApplication Communication) (Bradshaw et al. 1991, 1988). Plans for coor-
dination among MANIAC-enabled applications were modeled and executed by
means of an integrated planner we developed using ParcPlace Smalltalk. A
later version, NetMANIAC, extended messaging capabilities to other platforms
through the use of TCP/IP.

In 1992, we began a collaboration with the Seattle University (SU) Software
Engineering program to develop the first version of KAoS (Tockey et al. 1995;
George et al. 1994). We replaced the integrated planner with a fully object-ori-
ented agent framework, borrowing ideas from Shoham’s (1997) AGENT-0 work.
The following year, a new group of students replaced the MANIAC capability
with HP Distributed Smalltalk’s version of OMG’s Common Object Request
Broker Architecture (CORBA) (Siegel 1996).2

Providing Infrastructure, Scalability, and Security through a Foundation of
Distributed Object Technology

To the extent KAoS can take advantage of architectures such as CORBA, we
can concentrate our research efforts on the unique aspects of agent interaction
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rather than on low-level distributed computing implementation issues. CORBA

provides a means of freeing objects and agents from the confines of a particu-
lar address space, machine, programming language, or operating system
(Siegel 1996). The Interface Definition Language (IDL) allows developers to
specify object interfaces in a language-neutral fashion. Object Request Bro-
kers (ORBs) allow transparent access to these components and services with-
out regard to their location. The CORBA 2.0 specification extends the architec-
ture to deal with the problem of interoperability between ORBs from different
vendors. A set of system services is bundled with every ORB, and an architec-
ture for “common facilities” of direct use to application objects is being
defined. Among these common facilities will be a compound document facili-
ty based on an enhanced version of the CI Labs OpenDoc specification (Or-
fali, Harkey, and Edwards 1995).3

Our collaborations with SU have produced increasingly sophisticated versions
of KAoS that are designed to take advantage of the capabilities of commercial dis-
tributed object products as a foundation for agent functionality. To date, we have
investigated the use of two object request broker (ORB) products: IBM’s System
Object Model (SOM) (Campagnoni 1994), and Iona’s Orbix. We have also explored
agent interaction with Microsoft Component Object Model (COM) underlying Ac-
tiveX/OLE (Brockschmidt 1994), and are developing a Java version of KAoS.

We are encouraged by the increased cooperation among research teams and
product development groups working on agent technology. For example, we
are closely following the progress of the Mobile Agent Facility, currently being
defined by the common facilities task force of the Object Management Group
(OMG) (Chang and Lange 1996; Lange 1996; Virdhagriswaran, Osisek, and
O’Connor 1995). We have also been active participants in the Hippocrene project
of the Aviation Industry Computer-Based Training Committee (AICC) (Brad-
shaw, Madigan, et al. 1993; Bradshaw, Richards, et al. 1993) and are working
with members of the KQML subgroup of the knowledge-sharing initiative to bet-
ter understand and resolve interoperability issues. As research progresses, we
will continue to advocate industry-wide agent interoperability standards that
are neutral with respect to particular hardware platforms, operating systems,
transport protocols, and programming languages. Promising standards will re-
place aspects of or be incorporated into KAoS as appropriate in the future.

Providing an Extensible Language Semantics Through an 
Agent Communication Meta-architecture

It is challenging to define an architecture that is general enough to be imple-
mented in many different ways and applied to diverse problems, yet specific
enough to guarantee support for the requirement of agent interoperability. A
prime example of this difficulty is the CORBA specification, which required
successive refinement over a period of years until sufficient experience and
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consensus to assure that cross-vendor interoperability could be achieved.
The KAoS architecture dictates neither a single transport-level protocol,

nor the form in which content should be expressed, and allows agents to be
configured with whatever set of communication primitives is desired. For this
reason, it may be properly regarded as an open agent communication meta-ar-
chitecture.4

While not incompatible with languages such as KQML, KAoS provides a
more flexible and robust foundation for industrial-strength agents. We have op-
timized the architecture for extensibility so that new suites of protocols and ca-
pabilities can be straightforwardly accommodated as needed. Our goal is not to
lead the invention of new languages and methods of agent interaction but
rather to anticipate and easily adapt to new research, standards, and domain-
specific enhancements as they emerge in the future.5 If desired, for example, the
set of KQML “performatives” or the communication primitives of some future
specialized agent language could easily be implemented within KAoS.

Implementation Context

Figure 1 illustrates the primary long-range application context in which KAoS is
being defined. Though we have optimized our implementation to address Boeing’s
current needs, we intended the general architecture to support rapid evolution. We
are currently preparing versions of the basic KAoS implementation that will be
placed in the public domain where they can be evaluated and improved upon.

KAoS Architecture

The KAoS architecture currently aims to provide the following:

• A form of agent-oriented programming, based on a foundation of dis-
tributed object technology

• Structured conversations between agents, which may preserve their state
over time

• An approach for extending the language of inter-agent communication in
a principled manner, taking into account the repertoire of illocutionary
acts (“verbs”) available to agents, the set of conversation policies available
to agents, the content of messages, and a means for agents to locate and ac-
cess desired services

• A framework supporting interoperability with other agent implementa-
tions as well as with non-agent programs

• An environment in which to design agents to engage in specialized suites
of interactions

KAoS Agents. Basic characteristics of KAoS agents are described in the Basic
Characteristics of Agents subsection that follows. A consistent structure pro-

380 BRADSHAW, ET AL.



vides mechanisms allowing the management of knowledge, desires, intentions,
and capabilities. Agent dynamics are managed through a cycle that includes the
equivalent of agent birth, life, cryogenic state, and death.

The Agents and Objects subsection describes the relationship between agents
and objects. Each agent has a generic agent instance, which implements as a min-
imum the basic infrastructure for agent communication. Specific extensions and
capabilities can be added to the basic structure and protocols through standard
object-oriented mechanisms. Mediation agents provide an interface between a
KAoS agent environment and external nonagent entities, resources, or agent
frameworks. Proxy agents extend the scope of the agent-to-agent protocol be-
yond a particular agent domain. The Domain Manager carries off policies set by
a human administrator, such as keeping track of agents that enter and exit the
domain. The Matchmaker can access information about the location of the
generic agent instance for any agent that has advertised its services.

Agent Communication. Messages are exchanged between agents in the context
of conversations (see the Agent-to-Agent Communication subsection). Verbs
name the type of illocutionary act (e.g., request, promise) represented by a mes-
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sage. Unlike most agent communication architectures, KAoS explicitly takes
into account not only the individual message, but also the various sequences of
messages in which it may occur. Shared knowledge about message sequencing
conventions (conversation policies) enables agents to coordinate frequently recur-
ring interactions of a routine nature simply and predictably. Suites provide con-
venient groupings of conversation policies that support a set of related services
(e.g., the Matchmaker suite). A starter set of suites is provided in the architecture
but can be extended or replaced as required.

Scope of the Current Work. The current version of the architecture aims only to
specify those generic capabilities which are basic to agent lifecycle management
and communication. We are investigating extensions to the architecture to deal
with additional issues, including:

• End-user authoring

• Mobile agents

• Semantics of agent communication for emergent conversation behavior

• Joint intention

• Planning

• Complex negotiation

• Vague goal specification

• Learning and adaptive behavior

• Anthropomorphic or other visual presentation

• Message translation
Some of these potential enhancements and technical issues are discussed in the
Issues and Future Directions section.

Basic Characteristics of Agents

Agent-oriented programming ( Shoham 1997) is a term that has been proposed for
the set of activities necessary to create software agents. In the context of KAoS,
an agent can be thought of as an extension of the object-oriented programming
approach, where the objects are typically somewhat autonomous and flexibly
goal-directed, respond appropriately to some basic set of speech acts (e.g., re-
quest, offer, promise), and ideally act in a way that is consistent with certain de-
sirable conventions of human interaction such as honesty and non-capricious-
ness.6 From this perspective, an agent is essentially “an object with an attitude.”

But it is important to note that an agent’s “attitude” is not really an attribute
but rather an attribution on the part of some person (Van de Velde 1995). That is
what makes coming up with a once-and-for-all definition of an agent so
difficult: one person’s “intelligent agent” is another person’s “smart object”; and
today’s “smart object” is just a few years away from being seen tomorrow as just
another “dumb program.” The key distinction is in our point of view. For agent
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proponents, the claim is that just as some algorithms can be more easily ex-
pressed and understood in an object-oriented representation than in a procedu-
ral one (Kaehler and Patterson 1986), so it sometimes may be easier for develop-
ers and users to think in terms of intentional agents instead of passive objects
(Dennett 1987).7 Singh (1994) lists several pragmatic and technical reasons for
the appeal of viewing agents as intentional systems:

“They (i) are natural to us, as designers and analyzers; (ii) provide suc-
cinct descriptions of, and help understand and explain, the behaviour
of complex systems; (iii) make available certain regularities and pat-
terns of action that are independent of the exact physical implementa-
tion of the agent in the system; and (iv) may be used by the agents
themselves in reasoning about each other.”

Agent Structure. The KAoS architecture and generic agent class provide a con-
sistent structure for agents; this includes mechanisms for storing, updating,
querying, and “inheriting” knowledge (facts and beliefs), desires, intentions,
and capabilities.8 These structures are shown in the box on the right of figure 2.
Knowledge is defined as a collection of facts and beliefs. Facts are simply beliefs
about the agent and the environment in which the agent has complete
confidence.9 Facts or beliefs may be held privately or potentially made public
(e.g., using a blackboard). Desires represent the goals and preferences that moti-
vate the agent. Intentions represent the commitment of the agent to being in a
state where it believes it is about to actually perform some set of intended ac-
tions (Cohen and Levesque 1990). All agents are required to appropriately han-
dle external requests to provide information about their structure. An appropri-
ate response might be sometimes simply, “I am unable to give you the
information you request.”

While the KAoS architecture provides the “hooks” for implementing so-
phisticated agents based on these structures and related mechanisms, it does
not require that agents use these hooks in an “intelligent” fashion. The mini-
mal requirement is that agents be able to carry out successful conversations re-
lated to services they are requesting or ones which they have advertised—the
determination of the mechanisms by which this is accomplished is left to the
agent designer.

Capabilities are the services or functions that an agent can provide as defined
in specific extensions to the generic agent implementation. Our goal is to allow
as much flexibility as possible in how agent capabilities are defined. For exam-
ple, on the Windows platform, generic agents are currently packaged as OLE au-
tomation servers or OLE/ActiveX controls, and on the Macintosh platform
generic agent functionality is exposed through Apple Events. The Java imple-
mentation of KAoS currently relies on sockets. Because KAoS relies on popular
messaging schemes for communication between extensions and the generic
agent, agent capabilities can be defined or extended straightforwardly using any
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combination of standard programming languages, general-purpose scripting
languages (e.g., AppleScript, Visual Basic, Tcl, Perl, JavaScript) and declarative
logic-based programming languages (e.g., KIF, Prolog). We see this kind of ex-
tensibility as being a positive step toward the eventual (more ambitious) goal of
powerful visual end-user authoring environments wherein complete agents can
be defined (Cypher 1993; Repenning 1993; Spohrer, Vronay, and Kleiman 1991; 
Smith, Cypher, and Spohrer 1997; Malone, Grant, and Lei 1997).

Agent Dynamics.  Figure 2 shows how each agent goes through the equivalent
of birth, life, and death. At birth, agents instantiated and initialized with some
amount of innate structure. During their lives, agents go through a continuous
cycle of reading, processing, and sending messages. Agents may acquire addi-
tional knowledge, desires, and capabilities as they interact with other agents and
with their environment. As messages come in, agents update their structure,
formulate their intentions, and send new messages in order to act on them.

In specific applications, agent death may be required to free resources or sim-
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ply deal with agents that are no longer useful. Agent death poses special prob-
lems. Depending on the application, it may be necessary to include domain-
specific procedures for dealing with it. These may include notification of other
agents, transfer of any pending commitments, or transfer of knowledge.

KAoS agents that are declared as persistent must be able to go into a form of
“suspended animation” (called cryogenic state). Each persistent agent is responsi-
ble for saving the aspects of its structure required allow it to be reactivated
when required. The process of saving and restoring structure may also be sim-
ple or complex, depending on the situation.10

Agents and Objects

The KAoS architecture defines a basic structure and default core speech-act-
based agent-to-agent protocol that is normally shared among all agents. To this
basic capability, specific extensions and capabilities can be added as needed
through inheritance or aggregation. Communication between agents takes
place through the use of messages. A message consists of a packet of information,
usually sent asynchronously, whose type is represented by a verb corresponding
to some kind of illocutionary act (e.g., request, inform).11 Messages are ex-
changed by agents in the context of conversations. Each message is part of an ex-
tensible protocol—consisting of both message names and conversation poli-
cies—common to the agents participating in the conversation. Table 1
enumerates distinctions between communication in classical object-oriented
programming and in the agent-oriented architecture.

Like KQML, we make a distinction between communication, content, and
contextual portions of agent messages (Finin, Labrou, and Mayfield 1997). The
communication portion encodes information enabling proper message routing,
such as the identity of the sender and recipient. The content portion contains
the actual gist of the message (e.g., the specific request or information being
communicated) and may be expressed in any notation or form desired, includ-
ing binary executables. The contextual portion describes the type of message
being sent (e.g., request, inform) and tells how it relates to the larger scope of
the particular conversation taking place. Optionally, the message context may
also contain other descriptive information, such as the language used to express
the content and (if the content is declarative) references to particular ontologies
associated with it. The combination of all these features allows agents to ana-
lyze, route, and deliver messages properly without necessarily requiring inter-
pretation of content until they reach their final destination.12

Table 2 identifies the characteristics of an operation and compares these to
the characteristics of a message. By “operation,” we mean the invocation of a
procedure or a method.

Though operations may take place in isolation, messages occur only in the con-
text of a conversation. The meaning of a given operation may vary between in-
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stances of different classes, but a message always has a meaning defined by its
place in a particular conversation (see the Agent-to-Agent Communication sub-
section). For example, a decline message in the context of an Offer conversation
means something different from the same message in the context of a Request.

The parameters of a message contain any necessary meta-information about
message processing (e.g., maximum response delay, whether acknowledgment
is required) and the message content (e.g., content language).

Composition of Agents.  Figure 3 shows two agents communicating within a par-
ticular agent domain. Each agent contains an instance of the generic agent class
(or of a specialization of that class) which is called the generic agent instance.13 The
generic agent class implements as a minimum the basic infrastructure for agent
communication. It understands conversation policies (see the Conversations Poli-
cies subsubsection), and how to initiate and end specific conversations based on a
particular policy. The generic agent also monitors the current state of the conver-
sations in which the agent is participating, and is able to judge whether new con-
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Objects Agents

Basic unit instance agent

State-defining parameters unconstrained knowledge, desires, intentions,
capabilities,…

Process of computation operations messages

Message types defined in classes defined in suites

Message sequences implicit defined in conversations

Social conventions none honesty, consistency,…

Table 1. Objects versus agents 
(modified from Shoham 1997).

Table 2. Message characteristics.

Operation Message

Operation name Verb

Signature Conversation

Parameters

Return Value (none)



versational moves being proposed at a particular time are permissible.
The agent domain denotes the extent of inter-agent messaging; that is, no

agent can communicate directly with any other agent across the bounds of an
agent domain. For example, in a CORBA environment the bounds of the agent
domain would typically be the bounds of a set of communicating ORBs.14

Specific capabilities of particular agents may be defined by any combination
of inheritance (i.e., by creating specialized subclasses of the generic agent class)
or aggregation (by incorporating an extension implemented as a set of separate
objects).15 Figure 4 shows an agent implemented as an aggregation of an agent
extension with an instance of the generic agent class. Some extensions may be
very active, others may function passively as data repositories.

Defining specialized agents by inheritance generally has the advantage of
more efficient performance and tighter integration with the generic agent im-
plementation. Defining them by aggregation has the advantage of allowing the
implementation of agent capabilities to be determined dynamically at run-time.
For example, a particular agent designed to monitor resource consumption on a
set of machines may encounter a situation that requires human intervention. If
the agent contains a “hot pluggable” extension, the automated agent capability
can be unplugged from the generic agent instance on-the-fly and a human be
put in its place without interrupting the ongoing agent conversations, and with-
out the other agents even being aware that it is a person rather than a program
that is now directly controlling agent behavior.

Examples of agent extensions might include:
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• Unique programs implementing specific agent capabilities

• Encapsulations of internal resources over which the agent has exclusive
control, such as knowledge and commitments

• Representations of external resources over which the agent has exclusive
control, such as a mailbox

If an object is not exclusively owned by a particular agent, then any part of
any agent may interact with it directly. Examples might include:

• Encapsulations of internal resources over which the agent does not have
exclusive control. For example, instances of an “agent conversation object”
data structure might, in a particular KAoS implementation, be shared be-
tween the agents participating in flat conversation

• External resources over which the agent does not have exclusive control,
such as a display or an ODBMS.

Agent Environments: Bridging Domains through Proxy Agents.  An agent
environment comprises the set of all agent domains that fall within the range
of the agent-to-agent protocol and is thus potentially unbounded. The agent-
to-agent protocol extends beyond a particular domain through the use of
proxy agents (figure 5). Proxy agents are useful in cases where two agent do-
mains share agent-to-agent protocols but cannot communicate because they
are implemented within different distributed object environments.16 For ex-
ample, communication between different implementations of KAoS (e.g.,
Java, ActiveX, CORBA) might require proxy agents. Separate agent domains,
whether similar or not, may use proxy agents that communicate through
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sockets or through some other mechanism.17 Any extension of the range of
the agent-to-agent protocol beyond the bounds of an agent domain by defini-
tion uses a proxy.

To extend the range of the agent-to-agent protocol beyond the agent domain
requires that:

• Agents in both domains understand the agent-to-agent protocol

• One or more agents in each domain are capable of transmitting and receiv-
ing the agent-to-agent protocol over some form of connection between the
two domains, and in so doing act as gateways to their counterparts in the
remote domain.

Mediation Agents.  A mediation agent is any agent that communicates with ex-
ternal (i.e., nonowned) entities or resources. Hence, a proxy agent is a special
case of a mediation agent. A mediation agent provides in essence a gateway or
wrapper for external non-agent entities, allowing them to access resources via
the agent domain, and in turn allowing other agents to make use of them
through normal agent-to-agent protocols. A single mediation agent may manip-
ulate many external resources, and several mediation agents may share a single
external resource. Figure 6 illustrates some of the kinds of resources that media-
tion agents might manipulate.

In a typical KAoS application, most or all agents perform some form of me-
diation. Since external resources such as a database can be shared among agents,
the system designer need not design a single agent as a dedicated resource man-
ager (otherwise that resource manager could become a bottleneck for an other-
wise distributed system). For such cases it is preferable that several agents be al-
lowed—where appropriate—to access a given resource through an external
resource management facility (for example, a database API).
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Domain Managers and Matchmakers.  For an agent domain to become active,
two agents must be started. One is the Matchmaker, by which agents access in-
formation about services within a domain (analogous to the yellow pages in a
telephone book). The other is the Domain Manager, which controls the entry
and exit of agents within a domain, and maintains a set of properties on behalf
of the domain administrator.

For an agent to become part of a domain, it first registers itself with the Do-
main Manager, whose location must be known or accessible to the agent at ini-
tialization time. The Domain Manager ultimately lets an agent join a domain,
or prevents it from joining based on policies set by the administrator who is re-
sponsible for set up of the domain. The Domain Manager relies on a separate
naming service (white pages) to associate agent names with implementation-
specific object references.

In our implementations to date, Matchmakers have been defined as special
cases of mediation agents which use external repositories such as system reg-
istries or databases to store data about services. The Matchmaker’s major func-
tion is to help client agents find information about the location of the generic
agent instance for any agent within the domain that has advertised its services,
and to forward that request to Matchmakers in other domains where appro-
priate.18 In a CORBA environment, an OMG trader facility could be used in sup-
port of the Matchmaker function.

The Domain Manager provides the address of the Matchmaker to agents
within its domain. An agent advertises a service to the Matchmaker if it is pre-
pared to respond to messages from other agents wishing to use that service. An
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advertise message may specify whether there are any restrictions on which agents
may have access to and visibility of the advertised service. For example, certain
services may be made available only to client agents within the advertising
agent’s own domain. An agent desiring to use a service may ask a Matchmaker
to recommend available agents that have previously advertised that service. A rec-
ommend query may involve simple or sophisticated pattern-matching against an
arbitrary collection of potential service provider properties.

The Matchmaker does not currently track agents that consume services but do
not provide them. Neither does it directly provide a general repository for shared
agent knowledge—if required, this could be implemented by a separate mecha-
nism such as a blackboard. Specific message types used for communication with
the Matchmaker are discussed in the Matchmaker Suite subsection.

Agent-to-Agent Communication

Conversations.  Unlike most agent communication architectures,19 KAoS ex-
plicitly takes into account not only the individual message in isolation, but also
the various sequences in which a particular message may occur. We believe that
social interaction among agents is more appropriately modeled when conversa-
tions rather than isolated illocutionary acts are taken as the primary unit of
agent interaction. As Winograd and Flores (1986) observe:

The issue here is one of finding the appropriate domain of recurrence. Linguistic
behavior can be described in several distinct domains. The relevant regularities are
not in individual speech acts (embodied in sentences) or in some kind of explicit
agreement about meanings. They appear in the domain of conversation, in which
successive speech acts are related to one another. (p. 64]

We define a conversation to be a sequence of messages between two agents,
taking place over a period of time that may be arbitrarily long, yet is bounded
by certain termination conditions for any given occurrence. Conversations may
give rise to other conversations as appropriate.

Messages occur only within the context of conversations. Each message is
part of an extensible protocol common to the agents participating in the conver-
sation. The content portion of a message encapsulates any semantic or procedu-
ral elements independent of the conversation policy itself.

Conversation Policies.  A major issue for designers of agent-oriented systems is
how to implement policies governing conversational and other social behavior
among agents. Walker and Wooldridge (1995) have termed the two major ap-
proaches: off-line design, in which social laws are hard-wired in advance into
agents, and emergence, where conventions develop from within a group of agents.

For performance reasons, and because the deeper logic of conversations has
yet to be satisfactorily articulated by researchers, the current KAoS architecture
provides only for an off-line approach. Just as the KQML agent protocol embodies
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a separate linguistic messaging layer allowing agents to circumvent the
inefficiencies that otherwise would be imposed by the contextual independence
of KIF’s semantics (Genesereth 1997), KAoS provides an explicit set of mecha-
nisms encoding message-sequencing conventions20 that, in most situations, frees
agents from the burden of elaborate inference that otherwise might be required
to determine which next message types are appropriate.21 Shared knowledge
about message sequencing rules enables agents to coordinate frequently recur-
ring interactions of a routine nature simply and predictably.

Conversation policies22 prescriptively encode regularities that characterize
communication sequences between users of a language. A conversation policy
explicitly defines what sequences of which messages are permissible between a
given set of participating agents.

In current versions of KAoS, state transition diagrams are used to represent
each conversation policy.23 Every transition leads to exactly one state. All transi-
tions lead to a state labeled with a unique identifier such as a number. The scope
of the identifier is confined to the conversation policy—that is, no similarity can
be inferred between states of the same number in different conversation poli-
cies. Exactly one transition (the first transition) in each conversation policy does
not originate in a state. Each transition represents a message and is labeled with
the originator and recipient, and each but the first transition is labeled with the
message name. All states have transitions entering them. Any state with no
transition leaving it is a final state; reaching a final state ends the conversation.
Some conversation policies implement silence as a valid transition between
states; for example, Inform may terminate with an acknowledge message or
with silence, depending on what option is selected by the initiator of the conver-
sation (see below). Where silence is appropriate, the conversation terminates im-
mediately after the initial transition.

Facilities for implementing conversation policies and carrying out conversa-
tions are built into the generic agent capability. A starter set of conversation
policies (the Core suite) is also provided, but can be replaced or extended as
needed. The conversation policies of the default Core suite currently consist of
Inform, Offer, Request, Conversation for Action (CFA), and Query .24

Inform. The simplest case of a conversation is Agent A sending a single mes-
sage to Agent B with the “no response required” option enabled (figure 7). In such
a case, Agent B terminates its side of the conversation “silently” and the conversa-
tion policy reduces to the kind of atomic message sending encountered in most
agent communication languages. A slightly more complex example would be
when Agent A requires Agent B to acknowledge receipt of the information. This
it does by including a “response required” parameter within the initial message.

Offer. Whereas the effect of an inform message is immediate, an offer is future-
oriented. Hence an offer is something that can be declined, while it is impossible to
decline to be informed once one already has processed the content of an inform
message (figure 8). As an example, a monitoring agent could initiate an Offer con-
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versation with another agent that it perceived could benefit from its assistance.
Request. The conversation policy for a Request is shown in figure 9. This kind

of conversation policy (as opposed to the Conversation for Action policy below) is
best suited to an agent that known to reliably fulfill its commitments, or for
which the consequences of its failure to do so are slight. In the simplest case,
Agent B can simply perform the request of Agent A, with an optional acknowl-
edgment. The request may also be declined or countered by Agent B. Agent A
can in turn counter again, accept the request, or withdraw it at any time. Once
the request has been carried out by B, it optionally sends the report satisfied mes-
sage to A with results returned in the content portion.

We note here that there is a tradeoff between economy of verb types and “nat-
uralness” of expression within a given conversation policy. For example, one
could argue that acknowledge (in the Offer policy) and report satisfied (in the Re-
quest policy) should be replaced by simple inform messages. On the other hand, it
is clear that the use of the more specific verbs makes it easier to infer the function
of the messages in the context of their respective conversation policies.

This tradeoff between economy and naturalness of expression is an issue
which cries out for additional study. Based on our informal analysis, we believe
that the semantics of the most common types of more specific verbs can be
straightforwardly derived from the formal definitions of a small number of
basic speech acts.

Conversation For Action. We regard Winograd and Flores’ (1986) Conversa-
tion For Action (CFA) as a more complex variant of Request (figure 10). We in-
clude a slightly modified version of their Conversation For Action in our core
set of conversation policies, since it seems well-suited to many of the requests
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both that agents make of each other and that humans make of agent systems.25

In contrast to the Request conversation policy, Conversation for Action pro-
vides a more complex mechanism to handle commitments that persist over time
and may not be reliably fulfilled. Additional conversations may well be generat-
ed, as the agent negotiates with others to fulfill its commitments. The important
feature to note in the state-transition diagram is that communication about
commitments is handled explicitly: a definite promise must be communicated if
B accepts A’s initial request, and if B does not intend to fulfill its commitment, it
must send a renege message to A. A in turn must declare explicitly that it either
will accept or decline the report from B that the request has been satisfied.

Asynchronies in conversations. The implementation of a conversation policy
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must account for asynchronies in conversations (Bowers and Churcher 1988).26

The major asynchrony of concern is between the time of transmission of a
particular message and the time of response.

To handle asynchronies, a conversation policy must be designed to prevent a
conversation entering a state from which it cannot process an incoming mes-
sage. An asynchrony will manifest itself as an attempt to effect an invalid transi-
tion on a conversation, and should occur only when more than one participant
in a conversation can instigate a valid transition from a state. For example, in
figure 10, transitions from state 2 allow messages from either A or B. Each tran-
sition from such a state will conform to one of the following rules:

• The transition leads directly to a final state, in which the conversation will
no longer exist to process another incoming message. For example, B:A re-
nege in figure 10 leaves the conversation in state 6, from which an A:B
withdraw is irrelevant.

• The transition leads to a non-final state from which any message from an-
other participant valid in the originating state is still valid—for example,
because A:B withdraw is valid from both states 1 and 2 in figure 10, it will
have the desired effect even if B:A promise moves the state from 1 to 2.

Conversation policy implementation requirements. The agent initiating a conver-
sation specifies the opening verb and a conversation policy for a conversation, and
the responding agent must indicate in return that it is capable of processing both
the opening verb and the conversation policy. In implementing a conversation
policy, all agents which participate in a conversation will—by definition—correct-
ly generate and interpret all subsequent messages in the conversation.
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The capability to implement a conversation policy entails:

• Recognizing incoming messages correctly

• Generating appropriate outgoing messages

• Making the correct state transitions

Verbs.  Verbs name the type of illocutionary act represented by a message. All
verbs fall into one or both of the following categories:

• the name of the initial message in a conversation

• A named state transition in one or more conversation policies
That is, some verbs appear only inside existing conversations; some only initiate
conversations, and some may occur in either context.

The agent’s capacity to understand any verb which may occur during a con-
versation is implicit in its capacity to process the conversation policy for that
conversation. The capability of understanding a verb which initiates a conversa-
tion (an initial verb) entails:

• Understanding the initial verb

• Implementing the conversation policy that the verb uses

Suites.  A suite provides a convenient grouping of conversation policies that sup-
port a set of related services.27 The default Core suite of initial verbs and conver-
sation policies is normally available to all agents. In addition to the Core suite,
specialized agents such as the Matchmaker would be expected to process at least
one additional set of conversations (i.e., the Matchmaker suite).

Table 3 represents a conceptual model of the relationship between the basic el-
ements of the Core suite, omitting the Query conversation policy which is intro-
duced in the Query subsection that follows. Information about the relationship
between a verb and a conversation policy is shown within the cells: an I (initial)
shows that the verb may act as an initial verb and specify the conversation policy
for a new conversation; an S (subsequent) shows that the verb may be used dur-
ing the course of an existing conversation. An S in parentheses indicates that the
use of the verb within a given conversation policy is optional in some contexts
(e.g., acknowledgment of inform messages is not always required).

Rôles.  In a typical conversation, the agent requesting a service will select the
suite to be used for the conversation. The agent providing the service must have
already advertised the service and the set of suites which it requires. Having
done so, the two agents may then participate in a conversation, using an appro-
priate conversation policy in the selected suite.

Since a service-providing agent cannot make its services known to the
Matchmaker without first advertising their existence, and since a service-re-
questing agent cannot access the required services for the first time without
having the Matchmaker recommend an appropriate agent, every agent must
have access to the Matchmaker suite (described in the Matchmaker Suite sub-
section that follows). However, there is an important difference between non-
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Matchmaker and Matchmaker agents in how they will participate in such con-
versations: the former will only need to know how to initiate advertising and
recommending conversations in the rôle of a service requester, while the latter
must how to process them as a service provider.

Rôles serve to partition the available messages, such that a given agent need
not implement verbs and conversation policies in ways that it will never use.
For example, most KAoS agents will be capable of playing advertiser or re-
quester rôles in conversations with the Matchmaker, but only the Matchmaker
agent itself will need to implement capabilities and roles relevant to the process-
ing of advertise and recommend messages generated by others.

Rôles and suites. A suite maintains the permissible combinations of initial
verb, conversation policy, and rôle. It must specify at least two rôles (e.g., one for
the initiator of the conversation and one for the respondent). Where appropri-
ate, agents may be permitted to play more than one possible rôle for a given
conversation policy. For example, a Matchmaker may act as a service provider
during the course of processing a recommend conversation for a requesting
agent. However, in order to carry out the request, it may subsequently act in the
rôle of a service requester by initiating a recommend conversation with another
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Core Suite Inform Offer Request CFA

inform I

acknowledge (S) (S)

offer I

decline (S) S S

request I I

counter S S

accept S S

withdraw S S

promise S

report satisfied (S) S

accept report S

decline report S

declare satisfied S

renege S

Table 3. The basic elements of the Core suite, omitting Query.



Matchmaker in order to have its assistance in locating service providers consis-
tent with the original recommend request.

From table 3, we see that the Core suite provides the following combinations of
initial verb, conversation policy, and rôle for agents which initiate conversations:

• Inform, Inform, informer

• Offer, Offer, offerer

• Request, Request, requester

• Request, CFA, requester
The initial verb of a conversation determines the rôle for the agent originat-

ing the conversation. For example, any agent generating an inform or request
verb necessarily acts as an informer or requester, and the agent receiving either
of these messages will automatically adopt the rôle or rôles needed to process
these incoming messages.

Requirements for conversation initiators and respondents. To allow communica-
tion with other agents, each agent must be designed to support one or more
conversations. Being a conversation initiator or respondent requires an agent to
do the following for one or more combinations of suite, conversation policy,
initial verb, and rôle:

• Implement the conversation policies

• Implement the capabilities necessary to process messages appropriate to its
rôles in the conversations

• If an initiator, generate the initial verb.
Requirements for agents providing a suite of services. Providing a suite of ser-

vices entails that an agent must be capable of adopting an appropriate rôle for
each conversation in that suite. In other words, an agent must do the following:

• Implement all the suite’s conversation policies

• Implement the capabilities necessary to process messages appropriate to its
rôles as a service provider within instances of those conversation policies.

Example of Adding a New Conversation Policy: Query.  Though the starter set
of conversation policies defined in KAoS may be adequate for many common
sorts of agent interaction, there will often be a need to add new ones. We will il-
lustrate how this is done by adding a Query conversation policy to complete the
partial Core suite shown in table 3. The query verb can initiate either a CFA con-
versation policy whose state transitions are identical except for the initial verb,28

or a new Query conversation policy (figure 11). The major difference between
the Query and Request conversation policies is that the B:A report satisfied mes-
sage is not optional, and it must by definition contain some result (i.e., a re-
sponse to the query) as part of its content.

Consistent with the state transition diagram, table 4 shows that the query con-
versation protocol is identical to the request conversation protocol except that the
use of the report satisfied verb is required rather than optional. The shaded cells
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show what has been newly added: one conversation policy, one verb, and the
participation information.

Example of Conversation Policy Reuse: The Matchmaker Suite.  One challenge
addressed by the KAoS architecture is how to enable developers and consumers of
agent services to add a new suite with minimal effort. For example, if a request
for a new service could be made by reusing an existing conversation policy com-
bined with a new initial verb, developers could often be spared the trouble of cre-
ating a whole new conversation policy and making it available to each potential
requester. In the simplest case, any agent desiring access to the service which had
already implemented the conversation policy being reused would simply have to
extend its data about supported suites with a new initial verb. In many cases, not
only the conversation policy but also many of the agent-specific handlers that pro-
cess the messages of the conversation policy (e.g., countering) could be reused.

As an example, the Matchmaker suite is shown as the shaded area of table 5.
The suite is implemented by combining existing conversation policies with
three new initial verbs: retire, advertise, and recommend. The advertise message is
sent to the Matchmaker by any agent wishing to offer services. It uses the Offer
conversation policy with a more specific verb.29 The retire message is used by an
agent to withdraw its services. It uses the Inform conversation policy. The rec-
ommend message is used to request the Matchmaker’s help in finding an agent
to perform some service. Recommend uses the Query conversation policy.30

The Matchmaker suite thus provides the following combinations of initial
verb, conversation policy, and rôle for agents which originate conversations:
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• Advertise, Offer, advertiser

• Retire, Inform, retiree

• Recommend, Query, requester

Emulating Common KQML Agent Interactions.  Using the Core and Match-
maker suites as described, one could straightforwardly emulate common types
of KQML interactions described by Finin, Labrou, and Mayfield (1997):

• The simple KQML ask/tell sequence is identical to the simplest case of the
KAoS Query where an A:B query message would be followed by a B:A re-
port satisfied message.

• The KQML subscribe example could be implemented as a Request that re-
sulted in a series of inform messages sent from state 1 whenever the vari-
able of interest changed. The conversation would continue until B decided
to send a decline message to end the original request for the subscription
service. Alternatively, a new subscribe verb and/or conversation policy
could be added.

• The KQML recruit example could be implemented as three separate conver-
sations: the first as an advertise conversation between the Matchmaker and
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acknowledge (S) (S)

offer I

decline (S) S S S

request I I

counter S S S

accept S S S

withdraw S S S

promise S

report satisfied (S) S S

accept report S

decline report S

declare satisfied S

renege S

query I I

Core Suite Inform Offer Request CFA Query

inform I

Table 4. Completing the Core suite by adding the Query conversation policy.



Agent B, the second as a recommend conversation between the Matchmak-
er and Agent A, and the third, once Agent B was located, as a query from
A to B. Alternatively, a new, more complex conversation policy for recruit
or recommend could be defined.

• The KQML broker conversation would be handled in a similar fashion to
recommend, except that a new verb would need to be added to the Match-
maker to handle the indirection of the reply.

• The KQML recommend example is equivalent to the KAoS Matchmaker’s
recommend conversation.

Applications

In this section we describe some of the applications of KAoS to date.
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Core Inform Offer Request CFA Query

inform I

acknowledge (S) (S)

offer I

decline (S) S S S

request I I

counter S S S

accept S S S

withdraw S S S

promise S

report satisfied (S) S S

accept report S

decline report S

declare satisfied S

renege S

query I I

Matchmaker

advertise I

retire I

recommend I

Table 5. The Core and Matchmaker suites.



Initial Prototypes and Agent Utilities

Early versions of KAoS were used to build demonstrations of agent-oriented
programming and simulations of various agent activities. The first prototype
implemented a multi-agent version of a battleship game, defining specializa-
tions of the generic agent class for one or many cooperating ship captains on
each team, a game board Matchmaker, an Excel spreadsheet mediation agent,
and a referee (Tockey et al. 1995; Atler et al. 1994).

A maintenance performance support prototype demonstrated how mediation
agents could help coordinate the interaction between airline maintenance me-
chanics and their supervisors and adapt the presentation of task-related informa-
tion through a dynamic OpenDoc component interface (Bos et al. 1995). Generic
agent capability was specialized to create a supervisor agent, a job administration
agent, a user administration agent, and a client mediation agent that handled in-
teraction between OpenDoc “clients” and a KAoS agent domain.

A scheduling environment prototype showed how KAoS could be used to
implement assistants to aid in the process of scheduling meetings and meeting
rooms (Barker et al. 1995). A simulation of interaction with the agent system
through electronic mail and agent learning of user preferences was also created.
The scheduling environment consisted of a set of scheduling agents, a scenario
agent, a mail mediation agent handling interaction between a MAPI mail appli-
cation and the agent domain, and an OLE journaling mediation agent that com-
municated with Microsoft Excel.

Our experience indicated that a set of utilities to aid the construction, debug-
ging, and maintenance of agents would be invaluable for future applications.
We created an agent construction kit prototype based on Microsoft Foundation
Classes for the Windows platform, and a visual interface construction kit proto-
type using HyperCard on the Macintosh. We created a Conversation Monitor to
allow particular sets of agent conversations to be logged, passively monitored, or
intercepted. A Service Viewer provides a view on the services currently regis-
tered with a Matchmaker, and an Agent Structure Viewer allows one to inspect
the persistent state of a particular agent. Finally, we have explored the use of
NASA’s CLIPS development environment to represent and operate on Match-
maker knowledge.

Gaudi Intelligent Performance Support Architecture

The Boeing Company is exploring the use of portable airplane maintenance
aids (PMA) and online Web-based tools (Boeing OnLine Data—BOLD) to pro-
vide training and support to customers (Guay 1995; Bradshaw et al. 1993) A
new version of KAoS is being incorporated into one such prototype of an intel-
ligent performance support system (Bradshaw, et al. 1997). The system, named
Gaudi,31 is being designed around the actual processes, activities, and resources
of the work environment. It is intended to directly and actively support neces-
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sary tasks, adapting information to the requirements of the user and situation.
A similar architecture is being developed to support large-scale collaberation
between medical staff at the Fred Hutchinson Cancer Research Center and pri-
mary-care physicians worldwide (Bradshaw et al. 1997).

Seven requirements guide Gaudi’s evolution in the long-term:

1. Think tasks, not documents. The current transition in desktop computing is
from an application-centric to a document-centric paradigm. Distributed
component integration technologies (e.g., WWW, OpenDoc, ActiveX, Java)
are fueling this trend. However, as component integration technologies in-
crease in power and flexibility, user interfaces will move beyond a docu-
ment-centric approach to a task-centric one. Large undifferentiated data
sets will be restructured into small well-described elements, and complex
monolithic applications will be transformed into a dynamic collection of
simple parts, driving a requirement for new intelligent technology to put
these pieces back together in a way that appropriately fits the context.

2. Pave where the path is. This phrase comes from the old story of the college
planner who built a new campus with no paths built in at all (Brand 1994,
p. 187). After the first winter, she photographed where people made paths
in the snow between the buildings, and paved accordingly in the spring.
The lesson is that some elements of the design of the system need to be
postponed, and learned instead through actual experience with the user.
As part of a collaboration with NASA Ames, we are working to incorporate
an adaptive engine into Gaudi. The adaptive component is described in
more detail in the Learning and Adaptivity subsection that follows. 

3. Make all parts replaceable. The idea is that future users of such a system
would be able to easily add to or replace the software applications Boeing
provides with applications of their own choosing in conjunction with their
own or Boeing-provided data. A migration path from legacy monolithic ap-
plications to distributed component-based software must also be provided.

4. Link to anything (without requiring markup). SGML and HTML-based software
typically provides for hyperlinking based on embedded markup of textual
data. However embedded markup becomes problematic (Malcolm,
Poltrock, and Schuler 1991): where context-sensitive linking is needed, since
appropriate links may vary according to the user, task, or situation; where
linking needs to be added after the fact to data provided in a read-only for-
mat such as CD-ROM, or where the unpredictable nature of the content re-
quires dynamic query-based links rather than static pre-determined ones.

Additionally, new techniques need to be developed to allow linking to
complex data elements such as individual frames in a video stream or
pieces of 3D geometry. Linking to a variety of live dynamic datafeeds is of
particular importance We have implemented an agent-assisted external
linking facility that implements dynamic links without requiring markup.
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5. Run it everywhere. This requirement underlines the necessity of developing
a cross-platform approach (i.e., Mac, Windows, UNIX). It also requires that
progress in wearable and mobile computing platforms and networking ap-
proaches (such as developments in wireless communication) be taken into
account.

6. Pull data from anywhere. Rather than delivering a closed-box containing a
static set of Boeing data, users must be able to dynamically access and inte-
grate data that may reside on a networked server. This data may include
anything from a private airline spares database, to a Boeing-managed
media server for digital video, to other sources of information residing
anywhere on the public Internet. 

7. Let your agents handle the details. The fragmentation of data into smaller-
grain-sized objects and the decomposition of large applications into sets of
pluggable components could prove a nightmare for users if there is no sup-
port to help them put all the pieces together again. KAoS agents will en-
able intelligent interoperability between heterogeneous system compo-
nents, and will help filter and present the right information at the right
time in the most appropriate fashion to users who would otherwise be
overwhelmed by a flood of irrelevant data.

Issues and Future Directions

Work in progress on mobile agents, formalizing semantics and modeling dia-
logue as a joint activity, and learning and adaptivity are described in this section.

Mobile Agents

We are working on the issue of agent mobility on two fronts: 1) allowing mobile
users of small computing devices to interact with a KAoS agent domain residing
on a remote machine, 2) integrating the KAoS architecture with mobile agent
approaches that permit the physical migration and secure, managed execution of
agent programs on “guest” hosts not belonging to the sender of the agent.

With regard to the first issue, we have completed a prototype of a mediation
agent serving a mobile client of the Gaudi application by a wireless connection.
In the prototype, agents involved in a currently running session can be trans-
ferred from one client to another at the request of a user. Though the current
session context is preserved in the transfer, the agents are responsible for adapt-
ing to the characteristics of the client platform as required. For example, a user
can transfer a session running on a desktop with a high-resolution display to a
laptop with a low-resolution display. The user interface will adapt to the new
hardware configuration, and hyperlinks not appropriate for the new client (e.g.,
high-resolution multimedia) will be filtered out automatically. A serial connec-
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tion is maintained only as needed between the mobile client and the machine on
which KAoS is running. To preserve power and bandwidth, the connection is
an intermittent rather than an exclusive, continuous one.

With regard to the second issue, we are developing a Java implementation of
KAoS and are enhancing the KAoS OLE/ActiveX implementation to take ad-
vantage of DCOM. Agents will be able to transport themselves in two ways: 1) by
transferring an entire agent from one domain to another (teleportation), or 2) by
transferring only the agent’s extension (e.g., as an applet) to a different host
(telesthesia). In this second scenario, the mobile portion of the agent could exe-
cute on remote hosts while remaining in communication with its generic agent
in the home domain. Agent communication with other programs may be facili-
tated by the ability of agents to plug into an open protocol bus hosted as part of
client or server Web application services (e.g., LiveConnect on Netscape). We
will incorporate industry standards for agent transfer protocols as they emerge
(e.g., the dispatch, retract, and fetch verbs defined in Lange [1996]).32

Formalizing Semantics and Modeling Dialogue as a Joint Activity

To date, we have attempted no formal description of the semantics of KAoS
agent communication. Ongoing progress in such formalizations is summarized
by Cohen and Levesque (1997) and Labrou (Labrou 1996; Labrou and Finin
1994). We anticipate continued collaboration with these and other researchers as
this work moves forward.

A more general issue concerns the manner in which such a set of social laws
(e.g., conversation policies, collaboration strategies, policies governing reconsid-
eration of conventions) comes to exist within an agent society (Durfee, Gmy-
trasiewicz, and Rosenschein 1994; Wooldridge and Jennings 1994; Jennings 1993;
and Shoham and Tennenholtz 1992). We have noted in the discussion of conver-
sations the distinction between the approaches of off-line design and emergence of
agent social behavior. While the off-line design of social laws generally makes for
simpler design and more predictable agent behavior, we see value in allowing for
emergent behavior where the situation demands (e.g., complex negotiations 
[Zlotkin and Rosenschein 1994], teamwork [Cohen and Levesque 1991]).

For example, Cohen (1994) discusses the limitations of “state models” of con-
versations, such as those we have proposed as part of the current KAoS architec-
ture. While many of the problems he describes (nonliteral language, multifunc-
tional utterances, etc.) are more important for human-human or human-agent
communication than for agent-agent interaction using a very restricted language,
he makes a good case that, over the long term, “state model” (“dialogue gram-
mar”) approaches need to function in concert with more powerful plan-based
approaches that require agents to infer one another’s intentions at runtime.
Cohen summarizes the rationale for plan-based dialogue theories as follows:

Plan-based models are founded on the observation that utterances are not simply
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strings of words, but rather are the observable performance of speech acts… Plan-
based theories of communicative action and dialogue assume that the speaker’s
speech acts are part of a plan, and the listener’s job is to uncover and respond ap-
propriately to the underlying plan, rather than just to the utterance. (p. 187).

As an argument he cites Grice’s (1975) well-known example of a pedestrian with
an empty gas can who asks “Where is the nearest gas station?” The answer “it’s
two blocks down the road” may be truthful, and a perfectly conformant response
given the conversation policy in force, “but would be useless if the speaker knew
that the gas station were closed. Rather, what a cooperative dialogue participant is
supposed to do is provide an answer that addresses the speaker’s goals, plans, here,
one that directs him to the nearest open gas station.” (Cohen 1994, p. 187)

Cohen and Levesque (1991) develop the concept of a “joint intention” that ap-
plies to a set of agents involved in cooperative dialogue.33 According to theory,
team behavior is more than coordinated individual behavior: it involves the
mutual adoption of beliefs, intentions, and goals. For example, when an agent
agrees to respond to the query for the nearest gas station, a helpful answer should
be seen in terms of its having adopted some subset of the requester’s goal struc-
ture, agreeing not only to fulfill the manifest request but also to do whatever is
reasonable to help satisfy the questioner and meet his objectives. This may in-
clude, for example, finding and removing obstacles to the success of the plan, or
even recommending a different plan if it is known that the current one will fail.

The KAoS architecture assumes that agents identify each other by the ser-
vices they advertise; such an environment need not treat random encounters be-
tween unrelated agents as a primary concern. Accordingly, the concept of “joint
intention” is dealt with only implicitly by considering at design time the services
and the rules within conversation policies associated with those services.

Increasing the flexibility and power of agents will require elaboration of joint
action theory. Smith and Cohen (1996) have begun the development of a seman-
tics of agent communication that would allow the rigorous analysis of conversa-
tion policies such as those described in this chapter (see also Cohen and
Levesque 1997). Among other things, they have demonstrated that the behavior
of the state transition model of the Winograd and Flores CFA policy is consis-
tent with an emergent behavior of agents operating according to the principles
in their model of interagent communication. We expect to accommodate an
emergent model of agent communication in a future version of KAoS.34

Learning and Adaptivity

It is very difficult to write successful general-purpose agents. That is why some
of the most successful applications of adaptive agents (Maes 1997) and program-
ming-by-demonstration environments (Cypher 1993) have been for applications
such as mail and calendar managers, where the learning algorithms could oper-
ate within a strong task-model that defined context.
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Unlike more routine applications, the complexity and dynamic nature of
many aerospace problems make it very difficult to anticipate situations or con-
texts that agents will be encountering. Thus not only the situation patterns, but
also much of the task model and contextual knowledge must be acquired on-
line and incrementally as agents perform tasks in the real world.

We intend to provide a framework for the acquisition of situational knowl-
edge by reimplementing and refining the Situation Recognition and Analytical
Reasoning (SRAR) model (Bradshaw 1994; Boy and Mathé 1993; Boy 1991; Mathé
1990). The SRAR model was originally developed in 1986 as part of a project to
aid astronauts in diagnosing faults in the orbital refueling system of NASA’s space
shuttle. It has subsequently been applied at NASA Ames to develop a suite of
computer-integrated documentation (CID) (Boy 1992; Chen and Mathé 1992) and
telerobotics (Mathé and Kedar 1992) applications. Working in collaboration with
the originators of this approach, we have begun to integrate and extend selected
CID contextual learning mechanisms into the KAoS architecture to assess their
value in performance support applications (Mathé and Chen 1994).

The SRAR model provides a formal framework for integrating situational
(problem statement situational patterns) and analytical (problem-solving re-
sources) knowledge (figure 12). In the beginning, agents are “inexperienced”
and must rely on broad analytic knowledge (e.g., nominal models of tasks and
procedures that may be incomplete and incorrect). These analytic models may
be acquired through automated knowledge acquisition (Bradshaw et al. 1993)
or process- and task-modeling tools (Bradshaw et al. 1992). Learning mecha-
nisms rely on the reinforcement of successful actions, the discovery of failure
conditions, and the generation of recovery actions to improve performance. Ele-
ments of the analytical knowledge are transferred into situation patterns that
embody refinements of how procedures are carried out in real fact by particular
people in particular contexts. Over time, situational patterns multiply and be-
come more complex, while analytical knowledge becomes more structured. The
result over time is a set of agents that have learned by experience how to adapt
to particular people and situation patterns.

Conclusions

The KAoS architecture will succeed to the extent that it allows agents to carry
out useful work while remaining simple to implement. Although it is still far
from complete, our experience with the current KAoS architecture has shown it
to be a powerful and flexible basis for diverse types of agent-oriented systems.
The strength of the architecture derives from several sources:

• It is built on a foundation of distributed object technology and is opti-
mized to work with component integration architectures such as Open-
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Doc, ActiveX, and Java and with distributed object services such as those
provided by CORBA, DCOM, AND THE INTERNET

• It supports structured conversations that preserve and make use of the
context of agent communication at a higher level than single messages;
allow differential handling of messages depending on the particular con-
versation policy and the place in the conversation where the message oc-
curs; and permit built-in generic handlers for common negotiation pro-
cesses such as countering

• It allows the language of inter-agent communication to be extended in a
principled manner, permitting verbs and conversation policies to be
straightforwardly reused, adapted, or specialized for new situations

• It groups related sets of conversation policies into suites supporting a co-
herent set services

• It provides facilities for service names (yellow pages), which are advertised
to the Matchmaker by agents offering services

• It provides facilities for agent names (white pages), which allow a Domain
Manager to uniquely identify an agent as long as it persists

• It is appropriate for a wide variety of domains and implementation ap-
proaches and is platform- and language-neutral

• It allows simple agents to be straightforwardly implemented, while pro-
viding the requisite hooks to develop more complex ones

• It supports both procedural and declarative semantics
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• It is designed to interoperate with other agent frameworks (e.g., Aglets)
and protocols (e.g., KQML) either by extending or replacing the core agent-
to-agent protocol or by defining specialized mediation agents.

We are optimistic about the prospects for agent architectures built on open, ex-
tensible object frameworks and look forward to the wider availability of interop-
erable agent implementations that will surely result from continued collaboration.
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Notes

1. For surveys illustrating the variety of software agents research, see, for example, Brad-
shaw (1997), Wooldridge and Jennings (1995), and Nwana (1996).
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2. The OMG is the world’s largest software development consortium with a membership
of over 600 software vendors, developers and end users. Established in 1989, its goal is to
provide a common architecture framework for distributed object-oriented applications
based on widely available interface specifications.

3. Within the OMG, work is underway to provide standards for interoperability between
Microsoft’s Distributed Component Object Model (DCOM) and CORBA. Many ORB ven-
dors already provide their own versions of this capability. Various approaches to provid-
ing object system interoperability are discussed by Foody (1995).

4. In the spirit of Hewitt’s “open systems” (Hewitt 1991; Hewitt and Inman 1991), we do
not believe that it is practical or desirable that future systems rely on a specific common
agent architecture. What is important is that societies of different kinds of agents, regard-
less of internal structure, be able to coordinate their activities (Haddadi and Sundermeyer
1996), and that specialized agent architectures and languages optimized for particular do-
mains can proliferate while still being able to interoperate with more general ones.

5. If a particular third-party agent implementation does not conveniently lend itself to
direct implementation or emulation in KAoS, one or more mediation agents can be
defined to act as a gateway between the disparate agent worlds (see the Mediation
Agents subsubsection).

6. It is still too early to tell if agent-oriented programming will require fundamentally
different models of software development (Raccoon 1995) and user-interface design
(Gentner and Nielsen 1995; Erickson 1997).

7. Russell and Norvig (1995, p. 821) discuss the fact that while the concept of an inten-
tional stance might help us avoid the paradoxes and clashes of intuition, the fact that it is
rooted in a relativistic folk psychology can create other sorts of problems. Resnick and
Martin (Resnick and Martin 1990; Martin 1988) describe examples of how, in real life,
people quite easily and naturally shift between the different kinds of descriptions of de-
signed artifacts. See Erickson (1997) for an additional useful perspective on the advan-
tages and disadvantages of encouraging users to think in terms of agents.

8. See Haddadi and Sundermeyer (1996) for a survey of belief-desire-intention (BDI)
agent architectures. Note that the idea of “inheriting” knowledge is somewhat different
than that of inheriting methods, or attributes.

9. Alternatively, we have considered whether facts should be defined as beliefs that are
global (i.e., all agents pointed to the same set of facts). This definition would prevent the
problem of two agents having contradicting “facts” (which is otherwise possible in our
architecture). However this approach would impose the daunting requirement that all
agents in a potentially unbounded and dynamic agent environment have continuous ac-
cess to the current global set of facts.

10. There are many issues related to agent persistence that currently remain unsolved.
For example, there are problems associated with deactivating an agent while it is in-
volved in an ongoing conversation. If the agent is saved then restored to an environment
that has significantly changed, much of its previous knowledge, desires, and intentions
may no longer apply.

11. The basic message unit in KAoS is the message tag: {tag = value; }, which can be ex-
panded by recursively replacing the value with another message tag or series of message
tags. Our approach is similar in spirit to that of Sims, who has argued the benefits of “se-
mantic data” in OMG forums and in various publications (e.g., Sims 1994, pp. 138–144).

12. The KAoS architecture neither requires interpretation of content by Matchmaker
and proxy agents nor disallows it when it is possible and desirable to do so. By way of
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comparison, Finin’s description of KQML (Finin, Labrou, and Mayfield 1997) states that
every implementation “ignores the content portion of the message,” whereas Gene-
sereth’s (1997) ACL (Agent Communication Language) description of KQML currently
makes the commitment to KIF (Knowledge Interchange Format) as the content lan-
guage, so that the content is always available for interpretation.

13 An agent that comprises more than one agent is called a composite agent. It would
necessarily contain more than one instance of the generic agent.

14 Strictly speaking, the bounds of the set of communicating ORBs would constitute the
maximum bounds of a particular agent domain; the actual bounds of a particular agent
domain could be much smaller according to what was most convenient for agent devel-
opers. The domain constitutes the logical unit of administration for some set of agents, so
in principle several agent domains with different policies or application scope could co-
exist on a single ORB.

15. In object-oriented programming literature, aggregation means one of two things: 1. An
alternative to inheritance, used by COM, in which a class picks and chooses attributes and
methods—or groups thereof—from other classes (Brockschmidt 1994). The new class has a
subset of the union of the attributes and methods from the other classes, together with any
attributes and methods which the new class introduces; 2. The sense used here—namely,
the composition of an entity (such as an agent) from several object instances.

16. As Finin et al. (1995) observe, proxies can be used to provide a number of services:
firewall gateways, protocol gateways, message processing, filtering and annotating, and
agent composition.

17. The ability to carry on socket-based communication is currently required of all proxy
agents, who optimally may implement additional protocols as well.

18. The Matchmaker performs a similar rôle to a KQML “agent server” facilitator which
uses the advertise and recommend performatives (Finin, Labrou, and Mayfield 1997).
See Kuokka and Harada (1995) for a discussion of KQML and matchmaking; and Decker,
Williamson, and Sycara (1996) for a comparison of matchmaking and brokering ap-
proaches. Future versions of KAoS may include brokering capability.

19. Notable exceptions are Barbuceanu and Fox’s (1995) COOL, Kuwbara’s (1995)
AgenTalk, and the GOAL cooperation service framework (Cunningham 1995). Labrou
(1996) and Labrou and Finin (1994) have suggested a scheme by which a future version
of KQML could implement conversation policies.

20. For an excellent discussion on the role of convention in language use, see Deuchar
(1990).

21. Nothing in the architecture precludes a more sophisticated approach, based on an
emergent model of agent communication and notions such as joint intention and plan-
ning (see the Formalizing Semantics and Modeling Dialogue as a Joint Activity subsec-
tion).

22. A concept similar to our conversation policies is that of dialogue grammars (Cohen
1994). We discuss limitations of dialogue grammar models for agent communication in
the Formalizing Semantics and Modeling Dialogue as a Joint Activity subsection.

23. An object-oriented design for a finite state machine is described by Ackroyd (1995).

24. The Query conversation policy is described in the Query subsubsection.

25. We are not, however, claiming that the conversation for action model is necessarily
well suited for human-to-human conversation (Cohen 1994; DeMichelis and Grasso 1994;
Suchman 1993; Cohen and Levesque 1991; Robinson 1991; Bowers and Churcher 1988).
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26. See von Martial (1992) for a discussion of asynchronous conversation design tech-
niques abased on finite state models.

27. There is an analog to Apple Event Suites, which group high-level interprocess events
supporting a functional area (Apple 1993). Requirements for suite conformance in
KAoS, however, are somewhat more stringent than in Apple Event Suites.

28. Replacement of the initial verb of a conversation policy in a specialized suite is per-
missible when the new initial verb is a strict specialization of the generic illocutionary act
in the original conversation policy. For example, query is a more specialized request, and
decline is a more specific kind of inform.

29. The reason that an advertisement uses the Offer conversation policy rather than the
one for Inform is to give the Matchmaker an opportunity to refuse the services of the
agent, if it deems it necessary for some reason (e.g., the credentials of the advertising
agent are not acceptable). On the other hand, the Inform conversation policy is used for
retire, since the agent providing the service should be able to control when its services are
no longer available (i.e., the Matchmaker should not be able to refuse the agent’s an-
nouncement that it is withdrawing its services).

30. The Domain Manager suite and the Proxy suite also reuse conversation policies from
the Core suite. 

31. The system is named for the Spanish artist and architect, Antonio Gaudi (1852-1926),
who is most widely known for his work on the Sagrada Familia temple in Barcelona (Tar-
rago 1992). This monumental unfinished structure, on which construction still continues
after more than a hundred years, symbolizes our desire to investigate architectures capable
of outliving its designers and of providing a suitable foundation for unanticipated additions
of significant new features. We believe that complex, long-living structures are something
that need to be started by designers, but continually “finished” by users (Brand 1994).

32. Standardization of agent transfer protocols is an increasing topic of concern. See for
example, discussions by White (Gardner 1996; White 1996), Chang, and Lange (Lange
1996; Chang and Lange 1996).

33. A related concept is Clark’s (1992, p. 258) notion of joint conversational or perceptual
experiences. The idea is that two people “cannot talk successfully to each other without
appealing to their common ground,” i.e., “the sum of their mutual knowledge, mutual
beliefs, and mutual suppositions” (Clark 1992, p. 3).

34. An implementation of the joint action model would require that KAoS allow for con-
versations between more than two agents. We have not yet implemented such a capability.
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