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Existing group decision support systems used in meeting rooms can help teams reach
decisions quickly and efficiently. However, the decision models used by these
systems are inadequate for many types of problems. This paper describes our
laboratory’s experience with knowledge acquisition systems and decision support
tools. Our studies led us to develop a comprehensive decision model for group
decision support systems. This decision model combines current brainstorming-
oriented methods, structured text argumentation (using the gIBIS model), repertory
grids, possibility tables (morphological charts) and influence diagrams from decision
analysis. Each component addresses weaknesses in current group decision support

systems. We are assembling these group decision support components together into
a group decision workbench.

1. Enhancing group productivity with decision support

To better solve complex problems and foster interdisciplinary work, The Boeing
Company has made major organizational changes. For example, the design and
fabrication of a commerical airplane requires hundreds of disciplines to coopera-
tively work together to satisfy customer expectations. These activities require group
decisions which integrate sources of information such as customer requirements,
technological advancements, and manufacturing methods. Decision alternatives
must be evaluated against assumptions, objectives, and constraints. For the next
generation airplane, this will require the development of new collaborative
information support environments.

To promote the development of a collaborative support environment, we are
conducting experiments combining group decision support systems and knowledge
acquisition techniques (see Figure 1).

1.1. ADVANTAGES OF GROUP DECISION SUPPORT SYSTEMS

The need for electronic support of meetings is clear. In most organizations people
spend an average of 40% of their time in meetings, which are often frustrating, due
to the many barriers to productivity inherent in their structure (see Table 1).
Group decision support systems (GDSSs) address these problems. Tools such as
GroupSystems (Nunamaker Jr., Applegate & Konsynski, 1988; Ventana, 1990;
Daniels, Dennis, Hayes, Nunamaker Jr. & Valacich, 1991), SAMM (Dickson, 1991;
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TABLE 1
Barriers to productivity often frustrate meeting participants (Nunamaker JIr., Vaogel,
Heminger, Martz, Grohowski & McGoff, 1989; Nunamaker Jr., 1991)

It is easy to stray from the agenda

Less assertive individuals may have little opportunity to offer important ideas

Many meetings end with no sense of closure or accomplishment

The group must partition available time among members

Members can’t contribute comments as they occur. They may forget or suppress
them later in the meeting as they seem less original, relevant, or important

Fewer comments are made because members concentrate on remembering com-
ments (rather than thinking of new ones) until they can contribute them

Members must listen to others speak and cannot pause to think and generate new
comments

Members lack focus on communication, missing or forgetting the contributions of
others

Members are reluctant to criticize the comments of others owing to politeness or
fear of reprisals

Fear of negative evaluations cause members to withold ideas and comments

Members rely on others to accomplish goals, owing to cognitive loafing, the need to
compete for air time, or because they perceive their input to be unneeded

Discussion moves along one train of thought without deviating. Members don't
make comments that are not directly related to the cufrent discussion

Non-task discussion reduces task performance, although some socializing is usually
necessary for effective functioning

Some group members exercise undue influence or monopolize the group’s time in an
unproductive way

Members receive information faster than it can be processed

Often a strategy is missing for reaching a decision

Most of the meeting is undocumented

Scheduling meetings is difficult

Travel for meetings is expensive

Unproductive meetings frustrate teams

Tan, Wei & Raman, 1991), TeamFocus (Nunamaker JIr., Vogel, Heminger, Martz,
Grohowski & McGoff, 1989) and VisionQuest (Collaboration Technologies Com-
pany, 1991) use the processes of brainstorming, idea organization, and scoring and
ranking. These tools support many types of application problems (see Table 2).
Studies show that groups using GDSSs can solve more problems with greater
efficiency (Kramer & King, 1988). Experiments suggest that computer support can
improve the gquality of the decisions (Gallupe, DeSanctis & Dickson, 1988
Jarvenpaa, Rao & Huber, 1988; Nunamaker Jr., Applegate & Konsynski, 1988).
Other benefits of electronic meeting room decision support systems appear in Table 3.

1.2. PROBLEMS WITH GDSS DECISION MODELS

There are many areas of potential improvement for current GIDSSs (such as the user
interface, process modeling support, portability, cost). ‘This paper focuses on their
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TaBLE 2
Group decision support systems enable
productivity gains in many application
areas (Dennis, George, Jessup, Nunama-
ker Jr. & Vogel, 1988; Nunamaker Jr.,
Weber, Smith & Chen, 1988: Daniels,
Dennis, Hayes, Nunamaker Jr. &
Valacich, 1991; Sycara & Roboam, 1991)

Budget/resource allocation
Concurrent engineering

Crisis planning

Development of marketing image
Exploration of business challenges
Idea generation

Joint application design (JAD)
Market planning

Negotiation

Policy development

Requirements gathering and definition
Resolution of sensitive issues
Strategic planning

Systems analysis and design

Team building

decision modeling ability in the context of same time, same place meetings. Many of
the methods discussed below could also be applied to any time, any place meetings.

Sometimes the decision models provided by current systems break down when
applied to more complex problems. Examine the following scenario:

Department heads meet with their manager to help allocate money among
projects for the next year:

1. First, electronic brainstorming helps produce a list of important project related
issues.

2. Each member separately allocates a fixed amount of resources among the
projects.

3. Members further discuss issues and the system displays the group consensus
and spread of opinion.

4, The manager makes minor adjustments to the consensus and implements the
budget.

This brainstorm-and-score decision model can work well when there are few
interacting constraints among alternatives and when the space of alternatives is fixed
in size. But this simple list-prioritization scheme cannot represent the following
kinds of decision information:

Complex criteria. What reasons are there for picking Project A over Project B?
How important are the reasons? How does the group rate each project on each
reason? What aspects of criteria do the members prefer? Do certain reasons only
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TABLE 3
GDSSs can help facilitate group processes (Dennis, George, Jessup, Nunamaker Jr.
& Vogel, 1988; Nunamaker Jr., Vogel, Heminger, Martz, Grohowski & McGoff,
1989; Dennis, Valacich & Nunamaker Ir., 1991, Nunamaker, Jr., 1991)

General group process advantages:
+ A group as a whole has more information than any one member
« A member uses information in a way that the original holder did not, because
that member has different information or skills
* Groups are better at catching errors than are the individuals who proposed

ideas

+ Working as part of a group may stimulate and encourage individuals to do
better

e Members may learn from and imitate more skilled members to improve
performance

Advantages of electronic support:

» Entries made by individuals are anonymous

» The meeting focus is on content and task, not personalities

» Simultaneous entry enables equal participation from all members

« Entries are parallel and simultaneous. One or two individuals do not dominate
a meeting. Everyone generates and evaluates ideas

* Meetings produce electronic records

« Everyone generates more data in less time

¢ Meeting times shorten

* Fewer meetings are needed

« IBM on average has reduced calendar time 90% and people hours 60% for
many types of meetings

» It is often easier to reach agreement on volatile issues since ideas are
depersonalized

+ Participants fcel greater sense of ownership in outcomes

* The environment imposes a process structure; the structure helps to focus
meetings

* The environment fosters innovation and creativity

apply to certain projects?

Minimums, maximums, ranges. Project C needs a minimum allocation of $260 000.
Project D needs a range of $150 000-$450 000. Our budget limit is $2 000 000.

Restructuring complex alternatives. Projects E, F and G seem to have overlapping
customer requirements and objectives. Is this desirable? Will it lead to duplicated
effort or uncommon solutions? Can we restructure projects and their objectives so
that we don’t duplicate effort but still meet all the requirements?

Exclusivity. If we do Project H, we shouldn’t do L.

Enabling conditions. If the full $450 000 were allocated for J, we could purchase
critical resources from ACME Products.

Risk management. We have a make or buy decision. We're not sure ACME will
supply a critical resource in time for Project K. If they don’t, we’ll have to build
the resource ourselves, and it will cost an additional $200 000. Should we hold this
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money in a contingency fund? How long should we wait for ACME to deliver the
resource? Project L has a similar problem. Can we share the risk across both
projects (how is the year’s budget affected if both, neither, or one project will
need additional money)? What amount of risk should we tolerate?

Effect of uncertainty on payoffs. Project M’s success is less certain than that of
Project N but would probably have a bigger pay back if it was successful.

Timing. Project O depends on enabling technology from another department. We
shouldn’t start the project until it’s delivered. How can we use the uncertainty
about the delivery date to decide how much to allocate to Project O next year? If
it is delivered in March we would spend more money next year than if it were
delivered in September, even though the multiple-year cost would remain the
same.

Documenting running discussions. The requirements changed since the last budget
decisions—what arguments contributed to the selection of one alternative over
another? What will be the effect on requirement satisfaction if we use a different
alternative?

The brainstorm-and-score model can’t handle these types of decision information.
For instance, it uses a satisficing method—*"‘Find a way to solve the problem”—not
“Make sure you find the best way—or at least a good way—to solve the problem”.
A more complex model can help when we need assurance that a large portion of the
space of alternatives has been considered (for instance, engineering design alterna-
tives for a major system or subsystem} or when there are interacting constraints.

Brainstorm-and-score models lack explicit criteria, or at most include one
criterion for scoring, such as “importance” or “value”. It is often important to
illuminate many of the criteria affecting the decision. Explicit criteria can help point
out areas of agreement and disagreement and enable special forms of analysis. We
can express preferences for criteria values. We can assess uncertainty about aspects
of the decision. We can take into account attitudes toward risk and timing of
deliverables. We can measure the value of gathering further information or spending
more resources to control aspects of a situation. The model can represent
constraints between criteria. The reuse of criteria for future changes and similar
problems also helps offset the cost of collecting information about criteria.

Current GDSSs offer powerful environments to help users enumerate ideas during
a divergence phase of activity. But another problem occurs during the convergence
phase, when users must reduce and categorize the idea list. This synthesis process
can be dissatisfying and painful for group members. Methods discussed below can
reduce this frustration by providing an information constraint framework (see
Section 3.2.4 on possibility tables).

Section 2 discusses the foundations of our knowledge acquisition approach for
representing the missing information in a decision model. In Section 3 we develop a
model that incorporates the missing decision elements needed to handle these
problems. We use the budget problem and other examples to illustrate features of
the model.

2. A knowledge acquisition approach to GDSS design

We take a unique approach to GDSS decision modeling. We base our approach on
our laboratory’s experience with knowledge acquisition and decision support tools.



KNOWLEDGE ACQUISITION TECHNIQUES FOR GROUP DECISION SUPPORT 411

Using knowledge acquisition methods could significantly improve the effectiveness
of GDSSs by addressing their modeling inadequacies.

Many knowledge acquisition tasks are similar to group decision support system
tasks, and many knowledge acquisition tools use decision models (Boose, 1991). In
both cases, decision information must be elicited, represented, used to gain insight
about a decision, verified, and validated. Decision models in both areas guide the
type of information that should be captured. Users iteratively refine decision models
as they expand and test them. Eliciting and using knowledge from multiple experts
is similar to the problem of gathering information in a group setting.

The field of knowledge acquisition has developed powerful methods that help
users directly build, test, and refine models. We focus on representations and
analysis methods used by successful knowledge acquisition tools that we and others
have buiit.

Knowledge acquisition for decision support follows these steps:

1. Identify a problem-solving model by examining features of the problem.
Section 2.1 describes knowledge acquisition as a medeling activity.

2. Define knowledge types and roles. Important roles in a GDSS include
information, preferences, and alternatives. Section 2.2 discusses these ele-
ments of a decision.

3. Section 2.3 describes the role of mediating representations that effectively
communicate important problem aspects.

4. Section 2.4 discusses the cost-benefit tradeoff of building more complex
decision models.

5. Design or adapt elicitation and analysis techniques. Section 3 describes the
components of our decision model.

2.1. KNOWLEDGE ACQUISITION AS MODELING

Recent work in knowledge acquisition for knowledge-based systems has emphasized
that the creation of knowledge bases is a constructive modeling process, and not
simply a matter of expertise transfer of knowledge capture. Clancey (1986) stated
that knowledge acquisition is the familiar scientific problem of trying to create a
model where, in principal, none existed before {e.g. Clancey, 1984, 1990; Musen,
1988; Wielinga, Akkermans, Schreiber & Balder, 1989; Bradshaw & Boose, 1990;
Gruber, 1990; Shaw & Woodward, 1990; Cox, 1991; Ford & Adams-Webber, 1991).

We use knowledge acquisition methods to guide our thinking about the problem
of building decision systems. We use related concepts to define problem types and
the roles knowledge can play—the elements of a decision. We fill in the model gaps
in group decision support systems using successful approaches from our knowledge
acquisition experience.

A model-based description of the problem given in a form the user can intuitively
understand has many advantages. One important one is that it can serve to mediate
communication between users of the system, helping them articulate and understand
the broader, higher-level problem context. Section 2.3 on mediating representations
discusses some of these advantages.

Knowledge-based system researchers have defined many application problem and
problem-solving method taxonomies (Boose, 1992). These models establish and
control the sequence of actions required to do a task. For example, Analysis



412 1. H. BOOSE ET AL,

Scheduling,
] i Planning,
Debugging, 1 Complex
Simple Diagnosis, Layout,
Classification Interpretation | Configuration Cesign
i
] .
I
o
| ::
| n
-t - -
Analysis Synthesis
s Solutions Well-structured § Custom, special purpose
portion portion

FiGure 2. Problem classification techniques borrowed from knowledge-based systems help define
decision support models.

problems involve identifying sets of objects based on their features. Synthesis
(generative, or constructive) problems require that a solution be built up from
components pieces or subproblem solutions (see Figure 2). Assaciating a problem
with a category helps define the kinds of knowledge, elicitation, analysis and
reasoning that we need to reach a decision.

Ideally, decision modeling tools should also support the entire decision life-cycle,
from initial conceptualization to finished implementation of a solution. Each phase
of the life-cycle, however, poses its own problems and has its own requirements.
Many of the problems associated with information acquisition and maintenance stem
directly from the inadequacies of representations used at various stages in the
development of decision models. Our representations and tools should support a
smooth evolution of the model from an easily communicated, unconstrained,
conceptual statement of the problem to an unambiguous specification of the decision
reasoning system. This suggests a requirement that decision tools accommodate the
changes in representation that may accompany successive stages in model construc-
tion: from mental models to increasingly refined conceptual models via elicitation
and analysis techniques, and eventually, from these highly elaborated models to an
operational decision model information base via formalization and implementation
procedures (Shaw & Woodward, 1989).

2.2. ELEMENTS OF A DECISION

A complete decision model, containing relevant items of problem-solving knowledge
and their interrelationships, constitutes the decision basis (Howard & Matheson,
1984}, The decision basis combines information, preferences and alternatives.
Information consists of the knowledge about the problem. Preferences are factors
that determine the desirability of an alternative, such as cost, effectiveness or risk.
Alternatives are the possible solutions for the decision. Figure 3 shows these three
types and some important subtypes of knowledge.
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ALTERNATIVES
"“What can | do?"

INFORMATION
"What can happen?”

A
Enumerated alternatives
Synthesized alternatives

« Uncertain evidence
« Facts

PREFERENCES
"What do | care about?”
» Attitudes
» Objectives
+ Constraints

Figure 3. Building blocks of a decision include information, alternatives, preferences, and their
interelationships.

2.2.1. Information

One important part of decision knowledge is information about actual or possible
circumstances in the world that affect the decision. For example, we might want to
know the likelihood of the timely delivery of a critical resource before deciding
whether to fund a project. Finding out about a predicted delay may change our
decision.

It is useful to think of information as being of two types: uncertain evidence,
which are statements believed to be true with some probability, and facts, which are
statements believed with certainty. Facts are a special case of uncertain evidence in
which the mapping on to the space of probability distributions happens to be
concentrated on a single point. However, by making this distinction, we can often
formulate a problem with additional clarity and computational efficiency.

We can have incomplete information about the present and uncertainty about the
future. The decision may involve high degrees of risk. These problem affect the
decision process.

2.2.2. Preferences

Preferences describe the multiple, often competing goals that we value as outcomes
of a decision. The strength of our preferences motivates us to make a careful choice
among alternatives. If we really didn’t prefer project success to failure, or prefer
spending less money to spending more money, any effort we put into making a
decision would be wasted.

It is useful to distinguish between direct and indirect preferences. Direct
preferences relate to things we value for their own sake. Indirect preferences have
no intrinsic value except as they relate to direct ones. For example, when purchasing
a car, most people place a direct value on cost. However, fuel economy is usually
only indirectly valued because of its contribution to overall cost.

There are three different types of preferences: atitudes, objectives and
CONSIrainis:

1. Attitudes consist of items such as fime preference (e.g. the desire to receive
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good outcomes sooner rather than later) and risk artitude (e.g. the desire to
pursue a possibly less profitable policy to avoid risk).

. Objectives relate to the significant positive and negative consequences of the

alternatives that a decision maker wishes to maximize or minimize. In
decisions with multiple objectives, we must find methods of quantification and
joint measurement (i.e. commensuration) to make tradeoffs between them.
Constraings specify the conditions for maximizing objectives. They define the
Ilimits of the space of acceptable outcomes. Constraints may be matters of
definition (e.g. “There is $2 million budgeted for the project this year”) or of
principle (e.g. a moral belief that precludes consideration of alternatives such
as corporate spying to speed project development). We can relax many hard
constraimnts. For examiple, if we determine that a contemplated project cannot
be finished within its original time and budget constraints, we may decide to
increase the budget and hire additional personnel to meet the deadline.

Explicit modeling of preferences leads to the identification of irnportant criteria,
the ability to handle complex tradeoffs, and the ability to reach a difficult consensus:

1.

2.

We can address unigue tradeoffs. The model represents preferences and
tradeoffs explicitly so they can be seen by all and modified directly.

We can evaluate the effects of pieces of evidence. By performing sensitivity
analysis we can examine whether a particular picce of information in favor of a
project alternative will have any real effect on the allocation decision.

. We can measure the value of obtaining additional information. We can ask,

“What is the most I should pay to gather intelligence about a competitor’s
project in this area?”

. We can determine the value of controlling an uncertain variable. To guarantee

the timely delivery of a critical resource we could assess the value of acquiring
or merging with another company.

. We can measure and use risk attitude and time preference. In some situations,

it is worthwhile to model the company or department’s attitude toward risk
before making a decision. Time-critical situations may also require explicit
modeling of the risks and benefits of delaying or hastening the course of a
project.

. We can express recommendations in value terms. It may be important for a

system to not only recommend the favored budget plan, but also to estimate its
total cost or benefits in some meaningful unit of measurement. We can address
the quantification and joint measurement of “intangibles” such as company
image and quality of worker life.

2.2.3. Alternatives
Alternatives are the courses of action that may be recommended, consistent with the
decision basis. After hearing an economic report (information) and determining the
effect of the report on the success of the projects (preferences) we will choose
between projects (alternatives).

Often alternatives are synthesized from constrained components. for example,
including certain components of a design may prectude other components. Pos-
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sibility tables, discussed below, represent complex inter-component constraints and
help users synthesize new solutions.

2.3. MEDIATING REPRESENTATIONS

Effective mediating representations are critical to the success of both knowledge
acquisition tools and group decision support systems. They are the users’ window on
the decision model. Many knowledge acquisition tools achieve success in part
through the development and adaptation of good mediating representations (see
Figure 4).

We use the term mediating representation to “‘convey the sense of . . . coming to
understand through the representation” (Johnson, 1989). The design of a mediating
representation should be optimized for human understanding. Effective mediating
representations ease participant involvement in a group setting.

Winston (1984) says effective representations make important things explicit and

High-level models: 4
cases, exploded view diagrams, free-form text, forms, hypertext,
layouts, models

higher-level

Complex-structure collections:
activity graphs, and/or graphs, associative maps, attribute-entity
grids, bar charts, clusters, cognitive maps, decision tables,
decision trees, directed graphs, graphs, hierarchies, implication
graphs, influence diagrams, lattices, matrices, metaphors,
networks, pie charts, plans, possibility tables, procedures,
relational databases, repertory grids, scripts, semantic networks,
semi-structured text, tables, rees

Simple-structure collections:
frames, glossaries, goal structures, Hom dauses, lexicons,
predicate logic, propositional logic, protocols, rules, seguences

1

Simple sets:
correlations, probability distributions, relations, tuples

Symbols, numbers, unary operators:
concepts, confidence factors, objects, operators

tower-level

FIGURE 4. Effective mediating representations make the important elements of a decision explicit.
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hide unnecessary detail. They expose natural constraints, facilitate computation, and
are complete and concise. The choice of representation can have an enormous effect
on human problem-solving performance (Larkin & Simon, 1987). As an example,
consider that we can represent numbers as Arabic numerals, Roman numerals, or as
bits in computer memory. While all of these forms are logically equivalent, they are
not the same in a practical sense. It is much more efficient for a computer to
multiply numbers represented as bits than as numeric symbols. Similarly, from a
human perspective, it is easier to do multiplication with Arabic numerals than with
Roman numerals or binary numbers,

A good mediating representation can simplify modeling processes by providing a
medium for users to model their valuable but difficult-to-articulate knowledge about
an explicit ¢xternal form. The mutual development of a representation supplement-
ing the exchange of information between participants promotes and enriches
communication, leading gradually to a shared understanding of the emerging
conceptual model of the domain (Norman, 1988, 1991). Mediating representations
enable participants to cooperatively build decision models. Mediating repre-
sentations may also simplify maintenance and explanation by enabling users to
explore the conceptual domain model without resorting to low-level representations
(e.g. C code, Lisp, rules, pure text}.

Many knowledge acquisition tools derive their power from relying on a well
defined problem-solving model that establishes and controls the sequences of actions
required to do some task (Gruber, 1989; Klinker, 1989; Karbach, Linster & VoB,
1990). The problem-solving model defines the type of knowledge applicable within
each step, thereby making explicit the different roles that knowledge plays. Once
these roles are defined, we design representations and procedures nceded for
acquiring each type of knowledge. Research on mediating representations has
generally attempted either to improve the computational expressiveness of human-
efficient representations (e.g. repertory grids, decision trees, hypertext) or to
improve the learnability of computationally powerful ones (programming-by-
example, fourth-generation languages).

Automated knowledge acquisition tools are beginning to incorporate effective
mediating representations. These tools tend to adopt one of two approaches. Either
they contain interfaces that bear a close resemblance in appearance and procedure
to the original manual task—for example, cancer-therapy protocol forms in OPAL
(Musen, 1988) and engineering notebooks in vmacs (Sivard, Zweben, Cannon,
Laken & Leifer, 1989)—or they rely on some easily-learned, generic knowledge
representation form—for example, object hierarchies and repertory grids in DART
(Boose & Bradshaw, 1987; Boose, Shema & Bradshaw, 1990a, 1990b).

2.4, DECISION MODEL COSTS AND BENEFITS—AFPPLYING JUST ENOUGH EFFORT TO
A DECISION

There is a tradeoff between the costs and benefits of building more complex
decisions models. Ideally, we should apply just enough effort to solve a problem
with the needed level of accuracy. Finding this level is usually an iterative process.
We wish to start with simple models and expand them in critical areas. Sensitivity
analysis can help identify these areas. A simple budget model that starts with lists of
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FIGURE 5. Problems with higher uncertainty and complexity require more complex decision models.

projects may expand to include explicit criteria, interacting constraints, and risk
management factors.

Decision analysis (Howard & Matheson, 1984), for example, is a rigorous
methodology that involves eliciting numbers that represent uncertainty, value and
risk. Many decisions do not require this level of rigor. Sometimes the cost of such
analysis is not justified by the small size of the problem; sometimes the problem
seems so simple that the best alternative is obvious and we can act immediately
(Cyert & March, 1963; March, 1978). For personal decisions involving ethical issues,
such as whether to consider an abortion, the methodology itself may be largely
inappropriate (Levi, 1986).

Even among complex decisions, analysis requirements vary: different problems
demand different amounts of emphasis on modeling different kinds of problem-
solving knowledge. Complex decision problems require both information and
preference modeling for the system to enable insight and effectively formulate
recommendations. Grids, for example, enable new forms of analysis in a group
setting. These analysis methods can be keys to gaining understanding and insight
about a problem.

Figure 5 displays a set of problems as a function of the amount of uncertainty and
the complexity of preference issues.

We should determine the complexity of the model, then, by examining the types
of information needed to solve the problem, the precision and accuracy needed, the
time and resources available and the relative importance of the decision.

3. Building a stronger model for a GDSS

In this section we develop a GDSS decision model that incorporates aspects of many
tools and techniques. First we discuss DDUCKS, our integration test-bed. Then we
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build the decision model by adding knowledge roles, methods, and mediating
representations to solve different kinds of problems.

3.1. AN INTEGRATING INFRASTRUCTURE

As part of a project entitled Design of Information Systems (Benda, 1990) we are
defining an “open architecture” integrating environment. We call this environment
DDUCKS (decision and design utilities for comprehensive knowledge support).
DDUCKS is the underlying infrastructure for our group decision support work-
bench. Previously we used individual components of DDUCKS for several
applications. Now we are exploring how the components can work cooperatively to
help users solve complex decision problems {Bradshaw, Covington, Russo & Boose,
1990, 1991).

An underlying intermediate representation in DDUCKS stores decision informa-
tion. DDUCKS transforms this information between internal components and
ultimately between mediating representations. Users seeing information in different
forms triggers insights since each representation makes different information explicit
while hiding other information.

Sometimes DDUCKS needs additional information to assist the transformation.
For instance, gIBIS criteria must receive range, type and weight information before
their use in a repertory grid. The most difficult transformation—between grids and
influence diagrams—is discussed in detail in Bradshaw and Boose (1990) and in
Bradshaw, Covington, Russo and Boose (1990).

We attempt to use a common vocabularly for knowledge roles and processes
across all components of the model. For instance, we use the term criferion for: the
decision literature term decision variable, the statistical term dimension, the
psychological terms construct, characteristic and trait, the decision table term
attribute, the 1BIS term argument, and the design term rationale. Designing the
common information structure underlying these terms was a large part of the effort
of building our integrated model. Understanding these relationships simplifies the
problem of representing and transforming information for different modeling tasks.

While this paper focuses on decision model content, DDUCKS also contains
process management tools. These could be used to model and execute the process of
using the group decision support workbench. They could also model the decision’s
business enterprise context (Bradshaw, Holm, Kipersztok, Nguyen & Covington,
1992).

3.2. BUILDING THE MODEL

The first section below discusses a simple brainstorm-and-score model where we
generate and rank alternatives.

In later sections we add additional knowledge roles and methods to the
brainstorm-and-score model. We build knowledge roles from the elements of a
decision—information, preferences and alternatives, Each new section describes the
portions of the model needed for solving certain additional kinds of problems.

Described along with each new decision model component are its knowledge
roles, application problem characteristics and examples, processes and methods
used, example mediating representations and group use issues.
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Generate Rank
Alternatives Alternatives

FiGURE 6. The processes of generating and scoring alternatives are at the heart of most decision
problems.

3.2 1. Part i: brainstorm and score—rapid decisions using implicit criteria

A simple decision-making process includes generating and ranking alternatives
(Figure 6). This process is valuable for making rapid decisions or decisions where it
is not beneficial to build any more of the underlying model (Figure 7).

Description. A team that wants to increase the quality of customer service might use
a brainstorm-and-score system as follows:

1. Participants use brainstorming to generate ideas for the question, “What
inhibits our customers from being fully satisfied with our products and our
services?” Participants enter and view ideas anonymously, in parallel.

2. ldea organization tools help the team pull out key inhibitors to achieving
customer satisfaction from the brainstormed list. Participants organize com-
ments from brainstorming into a list of key issues.

3. Each group member votes, rating each inhibitor on it potential for improving
customer satisfaction.

4. Brainstorming again generates ideas on how to overcome the worst inhibitors,

5. Finally, electronic commenting helps form team policy—"“To improve cus-
tomer satisfaction, who in this room should do what and when? What are the
next steps?”’ Again participants enter and view ideas anonymously.

Section 1.1 summarized the applications, benefits, and group uses of systems
supporting this model.

Brainstorm

and score - Allgcate a budget across
. . existing departments
?lf.ﬁk ge?iﬁﬁgﬁ; - Find new ideas for improving
ranking o ! customer service quality

Rank
Alternatives

Generate
Alternatives

FIGURE 7. A fast and simple way to reach a group decision is to brainstorin alternatives and score them.
Tools such as GroupSystems, TeamFocus and VisionQuest support individual and group display of
decision results.
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Processes, methods, knowledge roles. This section includes typical processes,
methods and knowledge roles for brainstorm-and-score systems.

Generate requirements—Define the needs that help identify the problem.

Define problem—Define the problem and a process for solving it. Some tools have
templates or agendas that define process paths through sets of tools.

Organize problems—Use outlining to group problems in categories.

Define participants—Define the members and their roles {such &s participant or
facilitator) in the problem-solving process with rosters or group lists.

Organize participants—Categroize participants by session or problem type.

Generate altermatives—Identify potential solutions to a problem through
brainstorming or structured commenting.

Organize alternatives—Organize alternatives in categories with an outlining or
grouping tool.

Weight (score) alternatives—Score solutions for a problem individually or by group.
Common methods include placing items in order (ranking), assigning rating score,
voting (yes/no/abstain), selecting several alternatives from a list, and allocating
fixed resources among alternatives.

Generate and view team resnlts—Display consensus results and variation within the

group.

3.2.2. Part 2: structured outlining—linking alternatives and criteria

We can increase the utility of the group decision model by using explicit criteria
{Figure 8). The relationships between alternatives and criteria and the criteria
themselves can have simple or complex structures.

The gIBIS model uses unstructured criteria (text entries) in structured relation-
ships (tagged outlines) (Conklin & Begeman, 1988, 1989) (Figure 9). Although
designers use gIBIS primarily for design rationale capture the structure applies
equally well for developing other kinds of decision discussions in a structured
format.

A gIBIS-like model addresses the problems of documenting running discussions
and making criteria explicit (mentioned in Section 1.3).

Rank
Alternatives

Generate
Alternatives

Establish
Relationships

Generate
Criteria

FiGURE 8. Sometimes making criteria explicit helps the group to reach a better decision. Explicit criteria
allow alternatives to be examined in detail. They can also iluminate areas of agreement and
disagreement.
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Generalizes Replapes:
Specializes Questions
Is Suggested By
Questions Questions

Is Suggested By is Suggested By

Responds To

Position Argument

Supports
Objects To k——

FIGURE 10. gIBIS represents several types of criteria for alternatives.

Description. We have adapted gIBIS’s vocabulary to blend with our decision model.
gIBIs’s issue is the overall problem; positions are alternatives; arguments are
criteria.

The term gIBIS means “‘graphical issues-based information system™. gIBIS
initially captured design rationale. The system provides a language and browser that
allow individuals to add criteria for and against alternatives for certain problems
(Figure 10}.

The mediating representation is an outline where indentation shows relationships
between alternatives and criteria, and rags show other aspects of criteria, such as
whether criteria are for or against a position (Figure 11). This language is
straightforward to learn and read. gIBIS provides a browser that shows the
relationships graphically.

Since gIBIS records arguments as they evolve the model also captures aspects of
change over time.

Other tools such as SYBIL extend the gIBIS model (Lee, 1990). SYBIL helps

*I: Which processor should be used?
?P: Processor A,
AS: Fast
*p: Processor B.
AS: Already in use, thus cheaper.
-P: Processor C.
AO: Won't be available in time.

Figure 11. Indentations in IBIS text files represent hierarchical relationships. Issues are labelled with

“I", positions with “'P", supporting arguments as “AS”, and objecting arguments as “AQ”. “7” means

that the position is still open; “*” means that the position is resolved; “—"" means that the position is
rejected (Yakemovic & Conklin, 1990).
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manage dependencies, uncertainty, viewpoints, and precedents by extending the
relationship and tagging structure.

Applications. The IBIS method is useful for design and planning (Kunz & Rittel,
1980). It helps in structuring exploratory thinking in groups, addressing group
decision support, conversational structuring, and management of group memory,
Designers in group projects used gIBIS during document analysis, requirements and
design meetings, and personal brainstorming (Yakemovic & Conklin, 1990).
Processes, methods, knowledge rules. This section includes typical processes,
methods, and new knowledge roles for gIBIS.

Define the problem—Ildentify the problem issue and distribute it to the group.

Develop alternatives—The group develops position alternatives, adding them to the
information base.

Develop criteria—The group advances arguments for and against alternatives in a
running format.

Generate document—The group generates a final document showing accepted,
rejected, and open alternatives.

3.2.3. Part 3: grids—linking multiple alternatives and criteria

We can further increase the utility of the group decision model by adding structure
to the relationship between criteria and alternatives and by adding structure to the
criteria themselves. Explicit criteria in a grid format show relationships between
alternatives and enable analysis of decision information. Static and dynamic analyses
measure a grid’s problem-solving power. Other analysis tools measure the inde-
pendence and completeness of the alternative and criterion space. Defining criteria
and later analyses can be critical parts of the decision modeling process (Figure 12).

Building and analysing grids address the problems of defining complex criteria and

measuring their effect (mentioned in Section 1.3). Decision methods associated with
grids address some of the problems of representing criteria minimums, maximums
and ranges.
Description. DART (Design Alternative Rationale Tradeoffs) is a repertory-grid-
based knowledge acquisition tool. We originally developed DART for NASA as
part of an effort to capture design knowledge for the Space Station Freedom
program (Boose, Shema & Bradshaw, 1990a, 1990b). Similar tools and concepts
have been under development at The Boeing Company for many years (Boose,
1984, 1985; Boose & Bradshaw, 1987; Boose, Bradshaw, Kitto & Shema, 1989,
Boose, Shema & Bradshaw, 1989). DART contains elicitation, analysis, repre-
sentation, and inference metods derived from personal construct theory (Kelly,
1955). Other researchers have contributed elicitation and analysis techniques to grid
methods for knowledge acquisition, notably Shaw (1979), Gaines and Shaw (1981,
1990}, Diederich, Ruhman and May (1987), Garg-Janardan and Salvendy (1987),
Gaines (1987), Shaw and Gaines (1987), and Ford, Stahl, Adams-Webber, Novak
and Jones (1990).

Knowledge acquisition tasks performed by DART include eliciting criteria,
decomposing problems, combining uncertain information, incremental testing,
integration of data types, automatic expansion and refinement of decision informa-
tion, use of constraints during decision reasoning, and providing process guidance.
DART interviews users and helps them analyse, test and refine the model. The
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system represents, analyses, and reasons with information from multiple users
separately or in combination. DART derives decision results by propagating
information through alternative and criterion hierarchies.

DART uses tools to elicit and structure information about alternatives, criteria,
constraints and preferences. Static and dynamic analysis tocls in DART help
determine the adequacy of the decision model and help focus users’ attention on
parts of the model needing further refinement.

DART also uses machine learning techniques to help refine the decision model.

Group members may use induced information to further refine the decision model.
Machine learning takes place in DART in interactive and automatic forms,
Interactive forms include implication generation, analysis, and review. Automatic
forms include strategies embedded in the reasoning mechanism and methods to
automatically improve the decision model.
Applications. Figure 13 shows a repertory grid for a NASA Space Station Freedom
problem. Two teams verified a module’s location on the current design configura-
tion. We used DART to elicit and analyse information from both tcams separately
and then combined the grids together to reach a solution.

Repertory grids have been applied to hundreds of kinds of problems. In Boeing
we applied them to aircraft design and manufacture (e.g. acrodynamic analysis,
noise certification, documentation updating, materials technology, plant location),
computer systems maintenance and design (e.g. hardware and software selection,
product design and impact, statistics interpretation), defense and space system
design (e.g. Space Siation Freedom trade studies, composite materials, energy
control systems, image analysis), procurement and sales (e.g. vendor selection,
customer product matching, services advising, sales support), and organization
support and administration (e.g. employee evaluation, hot-line help, office automa-
tion, personnel selection, training) (Boose, 1988). Table 4 shows examples of
repertory grid use at Boeing.

Processes, methods, knowledge roles. This section includes typical processes,
methods, and new knowledge roles for repertory grids,

Solution (TEAM-2.80LUTION), Trait {TEAM-2. TRAIT)

212 115{5(4]4! 60 R TRAFFIC -PATTERN (1 LESS-DISRUPTION, 5§ MORE-DISRUPTION)
22 5|5]414] 100 R SUPPLY-ROQUTE {1 MINIMUM-DISTANCE, 5 LONGEST-DISTANCE)
4]414]4]412|2]2[2] 20 R INSTALLATION-REMOVAL (1 LONG-TIME, 5 SHORT-TIME)
2I2[1[5[2[1[3[1] 40 R CG-SHIFT-IMPACT {1 LESS_CG-SHIFT, 5 GREATER—CG-SHIFT)
ISTHS111(5711] 30 R GROWTH-PATH (1 BETTER-FOR-GROWTH, 5 WORSE-FOR-GROWTH)
2[2[21213[113]3[5] 40 R STATION-VISIBILTY (1 IMPROVES-VISIBILTY, 5 HINDERS-VISIBILTY)
3213121113 2] 80 R METEOR-DEBRIS (1 INCREASES-WEIGHT, 5 DECREASES-WEIGHT)
}
NODE-4-NADIR
NODE-4-PORT
NODE-3-STARBOARD
NODE-3-ZENITH
NODE-2-PORT
NODE-2-NADIR
NODE--2-ZENITH

NODE-1-NADIR

NODE-1-ZENITH

FIGURE 13. One design team’s simple repertory grid for an engineering trade study problem. DART
combines information from several designers to show consensus and dissension.
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Repertory grids have a wide application range

Aircraft Design and Manufacture

Acrodynamic Anal.—Geom.
Ady.

Aerodynamic Anal.—Front End
Advisor

Acrodynamic Anal.—Back End

Aircraft Fault Isolator

Airplance Mass Property Est.
Risk Analyser

Airplane Design Flutter Analyser

Airplane Noise Certification
Advisor

Automated Numerical Control—
Cutter Consultant

Automatic Flight Controls Diag.
Aid

B1 Diagnostic Consultant

Bond Durability Consultant

Documentation Update
Consultant

Failure Modes and Effects
Analyser

Finish Advisor for Design
Engineers

Finish and Corrosion Control
Consultant

Flight Controls Human Factors
Assistant

GT-STRUDL. Structural Analysis
Adv.

Jet Engine Diagonsite Aid

Jet Engine Fault Isolator

Jet Engine Manual Advisor

Materials Technology Advisor

Molded Rubber Seal Advisor

Parts Quality Control Consultant

Plant Location Selector

Propulsion Systemn Advisor

Resin Advisor for Composite
Parts

Rivet Selector

Structural Analysis Software
Sclector

Transport Airplane Config.
Selection Adv.

Velocity Analysis Advisor

Computer Systems Design and
Maintenance

Business Computing Needs
Advisor

Business Graphics Package Con.

Comp. Comm, System Bug Adv.

Computer Languages Consultant

Database Management System
Consultant

Graphics Package Advisor

Micro Computer—Needs
Analysis

Micro Computer—System
Consultant

Micro Computer—Workstation
Config. Adv.

Micro Computer Trouble Shooter

Product Design and Impact
Advisor

Product—Comparative Analysis

Product Marketing Advisor

Prog. Language Applications
Adv.

Programming Language Eval.
and Selector

Questionnaire Development

Rel. Database Construction Adv.

Software Management Consultant

Software Quality Advisor

Software Relcase Advisor

Software Services Advisor

Statistics Interpretation

Statistics Package Use Advisor

Defense and Space System
Design

Carbon Dioxide Removal (Space
Station Freedom)

Circuit Breaker Interface (Space
Station Freedom)

Composite Materials Advisors

Drawing Formats (Space Station
Freedom Program)

Energy Control System Model
Eval.

Experiment Configuration

Helicopter Avionics Diagnostic
Aid

Helicopter Hover Advisor

Helicopter Stick Position Advisor

Helicopter Vibration Diagnostic
Aid

Image Feature Analysis

Navigation System Advisor

Potable Water System (Space
Station Freedom)

Pressurized Logistics Module

Placement (Space Station
Freedom)

Shuttle Experiment Config.

Space Station Window Materials
Con.

Visual Target Identifier

Procurement and Sales

Al Vendor Consultant

Contraci Award Advisor

Customer—Product Matching

On-line Services Advisor

Sales Support Information
Analysis

Technical Sales and Serivees
Consultant

Organization Support and
Administration

Delphi Group Information
Gathering

Employee Evaluation

Hot-line: Consulting Aid

Management Motivation Analyser

Negotiations—Unreasonable
Offer Response )

Negotiations Advisor—Info.
Seeking

Negotiztions—Joint Gain

Negotiations Advisor—Cibtaining
Leverage

Negotiztion Arbitration
Environient

Office Automation System
Advisor

Office Automation Workstation
Advisor

Organiration Devel. Intervention

Organi:ational Climate
Diagnostician

Personnel Resource Mgt Decision
Aid

Personnel Technology Matching

Personnel Selection Consultant

Research and Devel. Lab Site
Advisor

Research Project Priority Advisor

Survey Reporting and Analysis

Task Priority Manager

Tax Regulation Consultant

Training Course Evaluator

Training Curriculum Advisor
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Generate alternatives—Potential solutions for a problem form the herizontal grid
axis. Similarity analysis, implication analysis, and table completion help genecrate
new alternatives or classes of alternatives not yet represented in the grid.

Weight altematives—Score solutions for a problem. This may be done with rank
ordering which scores alternatives based on criteria value preferences. Scoring is
also possible using pairwise comparison. Similarity analysis of the alternatives
vields a static measure of the criteria’s ability to discriminate among the
alternatives.

Organize alternatives—Organize sets of alternatives for better analysis, comprehen-
sion, and to reduce complexity. Cluster analysis suggests possible organizations
(Figure 14).

Generate criteria—Make factors affecting alternatives explicit. Criteria definitions
include type (nominal, ordinal, interval, ratio), value range, weight, and other
information that helps the reasoning process. Many methods help generate
criteria. Triadic and dyadic comparison methods elicit criteria that distinguish
between certain sets of alternatives. Alternative similarity analysis points out
highly similar alternatives that would always receive similar scores during decision
making. The user enters new criteria to help further distinguish between them.
Criteria similarity analysis measures criteria subsumption and independence.
Boundary analysis encourages users to generate hidden or extrnal criteria that
may control a situation. Laddering helps generate criteria at higher or lower levels
of abstraction to ground problems and to break important criteria into subcriteria.
Criteria are also generated during some types of decision model verification and
debugging based on rank order results.

Organize criteria—Organize sets of criteria for better analysis, comprehension, and
to reduce complexity. Cluster analysis suggests possible organizations (Figure 15).

NODE_3_STARBOARRD
NODE_3_ZENITH

NODE_4_PORT
HODE_4_NADIR
NODE_2_PORT
NODE_Z2_NADIR

N
NODE_1_HNADIR J

NODE_1_ZEMITH

84

94
NODE_2_2ZENITH

FiGure 14. Cluster analysis shows users similarities and helps them decompose or reorganize problems.
Users can label numeric junctions and DART automatically subdivides the grid into subgrids,
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GRONTH_PRTH

CG.SHIFT_IMACT
SUPPLY_ROUTE A

IR ———
TRAFF | C_PATTERN

INSTALLAT | DN_REHOUHL———/f’

STATIONMISIBILITY
METEOR-DEERIS

44

FIGURE 15. Here cluster analysis is done for criteria for the configuration design problem.

Laddering can help organize criteria into networks. Implication analysis shows

subsumption relationships and other patterns among criteria.

Weight criterin—Weights record the relative importance of criteria. Pairwise
comparison can measure the consistency of weight assignments. A decision tree
generation algorithm does a dynamic cost benefit analysis of criteria during
reasoning. Sensitivity analysis shows where to focus on model ¢xpansion.

Develop criteria—Assign a criterion type (nominal, ordinal, interval, ratio, cyclic)
according to the level of precision needed. Dialogs and value analysis may suggest
criterion types.

Generate repertory grid—Score sets of alternatives against sets of criteria in a table
format.

Generate preferences—Express preferences for criteria values (soft and hard
constraints). Criteria value preferences help to score and rank alternatives.

Generate generalizations—Make generalizations from information in the grid.
Implication analysis helps check the accuracy of the grid by using a machine
learning technique to generate information at a higher level of abstraction (Figure
16). This also shows criteria independence. Implication patterns can show criteria
Inconsistencies, ambiguities, and equivalences.

An algorithm developed by Gaines finds implications between criterion values
(Gaines, 1989). The system uses a repertory grid as a set of examples. Criterion

0.SOLUTIC)
HARD . 10 .FIX
HIGH.PPA.COST
LOVW.PPA .RELIABILITY AUTOMATED .PPA . TESTING

FiGURe 16. The graph shows the results of an implication analysis. Each cf the criterion values

HARD.TO.FIX, HIGH, PPA.COSTS, and LOW.PPA RELIABILITY imply that AUTO-

MATED.PPA.TESTING is necessary (from an on-board circuit breaker engineering trade study).
Participants use inductive generalizations to help refine the model.
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values are viewed as iogical predicaies, alternatives are the operands of the
predicates, and ratings are fuzzy truth values. Graphs and lists show implications
and their strengths.

Implications show relationships at higher levels of abstraction that are implied
by a repertory grid. If the user disagrees with an implication, DART helps refine
the grid. Frequently, the user can think of an exception to the implication (a new
alternative) that disproves it. The user enters this alternative, rates it, and the
implication strength is reduced appropriately. Sometimes implications point out
inconsistencies in the way that the user applies a criterion. In such cases a
specialization generalization dialog (laddering) helps decompose inconsistent
criteria into consistent subcriteria.

Generate constraints—Elicit constraints between alternatives and between criteria.
Some constraints limit the choice of alternatives given certain criteria values,
Other constraints restrict the values of interdependent criteria during reasoning.

Generate team results—Show combined results of alternative ranking from mem-
bers of a team (Figure 17). Show team consensus and corresponding dissenting
opinions. DART finds a dissenting opinion by computing a correlation score
between each individual and the consensus; the individual with the lowest
correlation score is listed as the dissenting opinion. Dissenting opinions show
users the range of opinion about a decision, not just the top scoring list.
Dissenting opinions give decision makers confidence that the top rated alterna-
tives were sound choices or point out arcas of disagreement for further
exploration.

DART also analyses and summarizes the differences between grids (Figure 18).
Other methods point out possible differences in vocabulary and meaning and
compute subsumption relationships between team members (discussed below).

Evaluate results—Use static and dynamic analyses to evaluate score results and
improve the decision model.

Static evalnation—Evaluate the potential of a decision model. Similarity analysis of
alternatives measures the ability of criteria to distinguish between alternatives,
Similarity analysis of criteria measures the coverage of alternatives and measures
criteria subsumption and independence. Implication analysis looks for accuracy of

100] 82 91 NODE_Z_NRD IR
78] 5] @6 NODE_1_MADIR
1] 67 69 MODE_2_PORT
1 67| B9 HODE_2_ZENITH
50| B0} 55 HODE..1_ZENITH
50| 42| 46 HODE_4_NRD IR
42] 39] 41 MODE_4_FPORT
25] 501 37 NODE_3_2ENITH
39) 29) 32 HODE _3_STARBCARD figresment Influence
w/Consensus on Consensus
' L___ consensus 1608 1008
TEAM_.1 2% 508
TERM_2 888 508

FIGURE 17. A rank ordering of alternatives shows the consensus and the contributions of individuals.
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Difference Grid

25 - .25 - .25 .50 .75 .25 .75 1: .33 wekwikiek CO_SHIFT_IMACT
5 - .73 - 1.0 .75 .25 1.0 .75 2: (5B keekkkkkbibkk GROUTHPATH

.50 .00 .50 .00 .62 .62 .50 .62 .75 Total: 8.25 (0.46 quedeel)d

.50 sekdoioklokdokd NODE._1_ZENITH

.00 NODE_.1_MNADIR

.50 meckiorokiciolk NODE_2_ZEMITH

.00 NODE_2_NADIR

L62 okdckkiokdckaik  NODE_2_FPORT

.62 #ddokdoldokkdokk  NODE_3.ZENITH
.50 Aekckadoldel - NQOE_3_STARBGARRD
J62 dwdorkdokickaick  NODE_4_PORT

LTS ekocbiokiokiokdolkk NODE_4_NAD IR

VOO NLWK -
[a]
N

Ficure 18. Differences between grids point out areas of agreement and disagreement. Here both teams
agree most about the alternatives NODE_1_NADIR and NODE_2_NADIR but disagree most about
NODE_4_NADIR and the criterion GROWTH_PATH.

information at higher levels of abstraction and checks criteria for consistency,

ambiguity and equivalence.

Dynamic evaluation-—Evaluate the results of a decision model by testing it.
Compare results with expectations to measure and verify the performance of the
decision model. Use this information to generate new criteria to fix specific
problems and improve the performance of the grid.

Group use. Grids have been used before in several specialized group settings. Grids

combine in different ways depending on commonality between alternatives and

criteria (Figure 19). Groups can use iterative methods to proceed from grids where
nothing is in common to those with shared alternatives and criteria. Grids with
common features can be analysed in a variety of ways. Shaw used grid comparison
techniques to measure difference between pairs of grids and subsumption relation-
ships across groups of grids (Shaw, 1979, Shaw, 1988). Boose adagpted this work and
added consensus and dissenting opinions when using grids to reach group decisions

{Boose, 1986, 1988, 1989; Boose & Bradshaw, 1987; Boose, Shema & Bradshaw,

1989). Chang used similarity analysis between grids in a dynamic group setting to

show similarities and differences as grids evoived (1986, 1991).

Shaw, Gaines and Woodward explored the conceptual space of consensus,
conflict, correspondence and contrast available when comparing grids (Shaw &
Gaines, 1988, 1989; Shaw & Woodward, 1988; Figure 20). The facilitator may use
several methods for conflict resolution. Boose (1986) describes a structured
negotiation technique where participants independently develop grids (divergence),
iteratively identify and merge important criteria and alternatives (convergence), and
finally reach a decision showing consensus and dissenting opinions {also used in
Schuler, Russo, Boose & Bradshaw, 1990). Shaw and Gaines (1989) describe a
detailed method of problem formalization, conceptualization znd feedback, ex-
change and comparison of information, and validation.

3.2.4. Part 4: possibility tables—developing models of alternatives
Often a simple text entry is not enough to represent an alternative. Alternatives may
need to be synthesized from components that involve interacting constraints. For
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Alternatives-1 Alternatives-2

Criteria-1
Criteria-2

Altarnatives-1 =
Alternatives-1 Alternatives-2 Altematives-2
- T T
% ' @
2 | 2
(& S
|
o~
o \
PR g
5| S
[
Nothing in common Common
alternatives
Alternatives-1 =
Alternatives-1 Alternatives-2 Alternatives-2
LIy LY
- .8 v .8
'y $ 3
26 25
&) (5]
Common criteria Both in common

FiGurRe 19. Grids combine in different ways depending on commonality between alternatives and
criteria. Group processes help members build common grids that enable further analysis and shared
understanding.

example, during the evolution of a design concept, designers must integrate diverse
sources and kinds of information about requirements, constraints, and tradeoffs. In
doing so, they evaluate alternatives for suitability under certain assumptions and by
applying criteria. Unfortunately, much of this process is implicit, making later
review difficult if not impossible. When requirements change, impacts on the design
are difficult to trace. This can lead to serious errors and costly rework.

Defining and choosing complex alternatives can be an important part of the
decision modeling process (Figure 21). Possibility tables handle some of the
problems of representing minimums, maximuams and ranges. They also address the
problems of restructuring complex alternatives and exclusivity mentioned in Section
1.3.

Description. We developed a stand-alone tool named Canard that helps synthesize
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FIGURE 20. Shaw and Gaines (1989) measured sets of grids and mapped the results. based on differences

and similarities in terminology and concepts. Their system discovered, for example, that one expert used

the critericn “low level data—high level data” in the same way that another used the criterion “neminal

data—interval or ratio data”. This type of analysis leads to sharing an understanding of vocabulary and
concepts between group participants (figure adapted from Shaw and Gaines, 1989).

alternatives from potentially large search spaces (Bradshaw, Boose, Covington &
Russo, 1989; Shema, Bradshaw, Covington & Boose, 1990). Canard helps generate
and structure complex alternatives in a possibility table. We adapted the possibility
table representation from manually developed strategy tables (McNamee & Celcna,
1987) and morphological charts (Zwicky, 1969). Decision analysts and designers
have used these tools for many years. Canard automates this representation and
extends its logic and structure to allow knowledge-based inference and the
representation of more complex problems (c.g. hierarchical tables, explicit repre-
sentation of constraints).

Canard also enhances possibility tables with constraint-handling tools that reduce
the possible solution space and capture important information about the design. The
system allows entry of both hard and soft constraints. A designer adds hard
constraints to capture information about incompatibilities and interdependencies
between component possibilities. During alternatives generation, these hard con-
straints prevent selection of any incompatible components.

Designers may add soft constraints and utility scores to criteria that characterize
generated paths. Preferences for these criteria are the design goals. Conflicts
between two or more design goals often require making tradeoffs between the goals,
For example, a goal of low cost is often in conflict with a goal of high reliability.
Using Canard, the designer can specify the acceptable range of a criterion and map
attribute values to the utility of these values. Canard then guides the designer
toward possibilities that optimize the tradeoffs between the soft constraints.

Canard provides documentation of the alternative synthesis history. It captures
and stores the information used in defining the alternatives. With such a capability,
a more complete record of the decision is available for later review and revision.
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We are also concerned with helping decision makers better explore the space of
alternatives. Cognitive scientists have long known that people typically retrieve only
a small fraction of available alternatives when generating hypotheses {Wise, 1985).
People tend to anchor on initial guesses, giving insufficient regard to subsequent
data. For various other reasons, people may not be able to visualize whole classes of
possibilities (Kahneman, Slovic & Tversky, 1982). DDUCKS maintains links
between possibility tables and related repertory grids. By coupling the alternative
generation facility to its analysis tools and those in DART, Canard helps users get a
better feel for the effects of the constraints on different alternatives and helps them
better evaluate the consequences of assumptions and tradeoffs.

Possibility tables could also help with the idea convergence process following
brainstorming. Possibility tables could capture the constraints and reasoning behind
synthesized categories as items are added. Then as the constraints and reasoning
change Canard could automatically manage the associated alternatives.
Applications. Typical applications of possibility tables in Canard include developing
alternative engineering designs and structuring new organizations. Figure 22 shows a
possibility table for a Boeing network design problem. In this problem Canard
stores standard network configuration components and constraints. Customers
specify requirements and givens (for example, existing hardware, the number of
workstations, or needed applications). The system shows allowable configurations as
paths through the component columns. The designer may modify a recommended
design (path) based on exceptions or special circumstances. Gauges show running
costs and other constraints.

Canard also helps create new problem solutions. The designer builds several
component columns, graphically specifying incompatibilities and other constraints
between component columns. Combinations of constraints suggest certain partial
paths through the columns, which in turn suggest additional components, new
columns of components, new constraints, new partial paths and so on. Shema,
Bradshaw, Covington and Boose (1990) show an example of an engincer
discovering new robot arm applications and designs. A similar method could help
administrators design a new organization structure.

Possibility tables in Canard have a graphical interface which eases creation and
change of design information. The designer creates new solution classes and
alternatives and defines solution paths. The interface also assists the designer in
managing the complexity of large design problems by presenting the design in an
easily comprehensible view.

Processes, methods, knowledge roles. This section includes typical processes,
methods, and new knowledge roles for possibility tables.

Generate alternative classes and class components—A column header and its cells
represent design components or functions and possible alternatives for the
component.

Generate compatibility constraints—Constraints between cells within a column or
between columns record incompatibilities and help the designer find paths
through the table. These appear in the table or on a compatibility tree (Figure 23).

Generate a solution path—Build a set of links between cells that represent a partial
or complete solution class. These may be specified by the designer or through
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FIGURE 23. A mediating representation for a partial compatibility tree, showing CPL), memory, and hard
disk configurations. Alternative values and criteria value probabilities are recorded in a similar fashion.

semi-automatic path generation based on optimizing solution path criteria such as
cost and reliability.

Generate solution classes—Cells in the left-most column show names of completed
paths through the table. Partial solution paths may suggest new solution classes.
Generate solution path criteria—Global criteria associated with solution paths keep

track of items such as cost and reliability. These criteria may reside in an
underlying repertory grid and possess weights, preferences, ranges, types and
constraints. A utility mapping tool helps users record preferences and constraints
(Figure 24).
Group use. Experiments using possibility tables in groups are in progress. In the
simplest situation, multiple designers contribute non-overlapping information cover-
ing different aspects of computer network design. This information combines to
form a larger possibility table.
More complex situations will involve:

Combining columns and cells in reasonable structural ways.

. Merging different cells under the same column headings.

3. Computing differences in constraints when multiple participants share the same
cells across columns.

b =
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FIGURE 24. Users map preferences, hard and soft constraints and values to utility scales.

4, Measuring content and pointing out conflicts of vocabulary or concepts (similar
to the way that Shaw and Gaines measure such differences for repertory grids,
above).

5. Specifying constraints between different segments of the model contributed by
different participants.

6. Analysing differences in the related repertory grids that hold path criteria,

7. Showing consensus and range scores for decisions using this information.

We are developing group facilitation processes to resolve differences when they
are uncovered. We would like to dynamically measure differences across a group
working in parallel on individual yet overlapping parts of a large table.

325 Part 5: decision analysis—modeling uncertainty and risk
Uncertainty and risk are important components of many decisions yet .they are
seldom included in a formal model (Figure 25). Gathering information about risk
and uncertainty may incur a high cost, but automated techniques and good
mediating representations can reduce this cost. We have borrowed and extended
techniques from decision analysis and knowledge-based systems to build Axotl, a
stand-alone decision analyst’s workbench. In Axotl, influence diagrams from
decision analysis (a concise form of probabilistic decision trees) show the conditional
relationships between criteria (Figure 26). They enable rigorous decision path
scoring. Associated techniques can help expand the decision model and uncover
areas where it is important to find further information. In the future we will be
incorporating methods from Axotl in our group decision support workbench.
Influence diagrams and associated representations address the problems of
modeling enabling conditions, risk, the effects of uncertainty, and timing issuecs
(mentioned in Section 1.3),
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FIGURE 26. An influence diagram for an R&D investment decision about an automated speech-to-text
transcriber. Three decisions form the investment strategy (development investment level, production
investment level and unit price). Rectangular nodes on the diagram represent these decisions. Oval nodes
represent technical risk variables (accuracy, speed), production uncertainties (unit cost), and market
uncertaintics (market size). The eight-sided node labeled “Profit” is the criterion to maximize in
evaluating the decision model to determine an optimal policy. Arrows between nodes represent relevance
or information flows between variables. For example, arrows, from *‘Speed” and “Accuracy” to “Market
size” represent judgements about the relevance of technical achievement to our assessment of market
size.

Description. A promising approach for dealing with risk and uncertainty is decision
analysis (Howard, 1966; Raiffa, 1968; Keeney & Raiffa, 1976; Howard & Mathe-
son). In the past few years, several tools attempted to help automate portions of the
decision analysis process. However, the current generation of automated decision
analysis tools (such as decision tree software) are limited in scope and assume a high
level of sophistication in the theory and practice of decision analysis. These tools
contain some of the algorithms of decision analysis practice, but do not embody the
experience and intuition of decision analysis professionals in formulating and
appraising decision models. Also, because current tools cannot conveniently store
and reuse domain expertise, they cannot exploit the similarity between recurring
decisions in the same domain. New decisions are typically modeled from scratch.
Axotl works with knowledge-based templates that contain some of the experience
of a decision analyst. It combines a decision analysis workbench with knowledge-
based tools to assist individuals consulting with the system about decisions involving
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high stakes, difficult tradeoffs, or critical uncertainties and risks (Bradshaw & Boose
1990; Bradshaw, Covington, Russo & Boose, 1990, 1991). Axotl contains a
graphical editor that helps create and refine influence diagrams that model relevant
decision alternatives, preferences, and uncertainties. Influence diagrams are solved
to obtain recommended actions in a way that is consistent with probability and
utility theory (Howard & Matheson, 1980). The system computed an expected value
or utility for ¢ach alternative that expresses the anticipated range of benefit or cost
for a given course of action.

While mathematically similar to probabilistic decision trees, influence diagrams
possess several advantages: (1) influence diagrams grow linearly in their graphical
representation as contrasted with the exponential growth of trees; (2) they can
represent and exploit conditional independence and (3) in implementation they
connect to external procedures and functions in a straightforward way. Additionally,
our experience confirms that influence diagrams are an effective way of com-
municating important issues among participants in a decision, even for those who
may not understand the mathematical underpinnings.

The influence diagram solution method implemented in Axotl incorporates a new

approach that allows a wide range of questions to be answered directly from the
diagram, and preserves the entire underlying joint distribution during solution and
inference procedures, rather than just the value lottery and decision policy as is
usually done (Schachter, 1986). The distribution editor is a another feature unique
to Axotl. It helps users structure conditional probability distributions.
Applications. Decision analysis applies to areas such as business portfolio manage-
ment, environmental issues, facilities investment and expansion, hurricane seeding,
investment strategies, market forecasting, medicine, new product introduction,
nuclear plant construction, research and development portfolio management, space
program planning, strategic planning, and systems engineering (Howard & Mathe-
son, 1984). At Boeing we have used Axotl to build a prototype for making research
and development investiment decisions. Other applications under way include
process management and bone marrow transplant follow-up care.

Developers configure the knowledge-based tools in Axoti with application-
independent knowledge (i.e. knowledge of decision analysis tools and methods) and
application-specific knowledge (i.e. knowledge about a particular domain) to
provide guidance and help during a decision.

Processes, methods, knowledge roles. This section includes typical processes,
methods, and new knowledge roles for decision analysis techniques used by Axotl.

Generate alternatives—Generate alternative choices.

Generate alternative values—Enter the amount of relative worth of each alternative
using direct entry or pairwise comparison.

Generate criteria (influence diagram variables)—Generate the decision variables for
an influence diagram.

Generate constraints—Store constraints in a compatibility tree structure.

Generate influence diagrams—Show decision alternatives and their values, criteria
and their interrelationships, and associated conditional probabilities.

Weight criteria—Measure the relative importance of criteria wsing sensitivity
analysis. Sensitivity analysis enables individuals to determine which variables are
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FIGURE 27. The distribution tree for “Market size”. The right-most nodes and their branches represent
the atomic distributions. The atomic disiributions of “Market size” are conditioned on its direct
predecessors in the mfluence diagram, “Accuracy” and “Speed”. The conditioning tree is the part of the
distribution tree that precedes the atomic distributions. The ability to explicitly structure conditioning
trees and to represent them using a richer language permits reasoning about distributions with additional

clarity and efficiency.
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the most important determinants of final value (e.g. “Is speed more important
than accuracy?””). Value-of-information analysis is useful in understanding the
importance of resolving uncertainty for specific components of the model (¢.g.
“How much should I spend to estimate the size of the market?”). Value-of -
control analysis focuses attention on new alternatives that can increase the ability
to bring critical uncertainties under our control (e.g. “‘Should we control unit cost
by acquiring a semiconductor company that manufactures the required chips?”).
Graphical facilities supporting value-of-information analysis and value-of-conirol
analysis enable those consulting the system to determine the value of undertaking
activities to gather new information or generate new alternatives (Howard &
Matheson, 1984). )

Generate criteria probabilities (uncertainties)—FEstimate the uncertainty associated
with criteria values. A distribution editor helps structure conditional probability
distributions (Figure 27). The system also uses probability wheel techniques to
encode uncertainty. Knowledge maps can help break down complex probability
assessments into simpler ones.

Generate value-of-information for criteria—Solve the influence diagram to find the
value of reducing uncertainty about criteria values.

Generate value-of-control for criteria—Solve the influence diagram to find the value
of being able to control criteria values.

Generate expected values—Solve the influence diagram to find the most reasonable
alternative.

Group use. Merging influence diagram information in group settings will involve:

1. Merging smaller individual influence diagrams into larger, more complex ones.

2. Computing and reporting differences in the values of outcomes when par-
ticipants share the same alternatives.

3. Computing and reporting differences in the values of variable probabililies
when participants share the same criteria.

4. Finding differences in preferences, value and risk by comparing utility graphs.

5. Showing consensus and range scores for expected values of decisions using this
information.

4. Summary

Existing group decision support systems can help teams reach decisions quickly and
efficiently. We pointed out some of the deficiencies of these decision models when
using them for complex problems. Weaknesses include the lack of the models’
ability to handle documentation of running discussions, complex criteria and
alternatives, numeric ranges, exclusivity, enabling conditions, risk managemcnt,
uncertainty and timing issues.

We proposed that models used by some successful knowledge acquisition could
handle many of these problems. Knowledge acquistion and group decision making
are modeling activities. We discussed the importance of good mediating repre-
sentations. Many of the mediating representations used by knowledge acquisition
tools would be useful in a group decision support system. We are in a unique
position to combine methods from these areas given our laboratory’s extensive
experience in implementing and using knowledge acquisition techniques.
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Next we pointed out the basic buidling blocks of decision models—information,
preferences and alternatives. There is a tradeoff between the cost and the benefit of
building a more complex model. Techniques such as sensitivity analysis can help
point out when to expand critical parts of the model.

Finally we described components of a complex decision model. We described the
modeling strengths contributed by each component. We gave a short description of
each component along with the component’s methods, applications, knowledge roles
{(built up from the basic decision element building blocks) and group usage. The
components included the brainstorm-and-score model, a gIBIS-like model for
recording running discussion, repertory grids for enabling analysis, possibility tables
to handle complex alternatives and constraints, and decision analysis techniques to
handle risk and uncertainty.

All these components exist in successful tools. Their analyses and methods will be
critical in helping groups to gain insight and understanding about complex problems.
We are blending them into a single workbench that will be powerful enough to
handle the complex problems facing Boeing’s work teams.
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