
Appears in Birnbaum, L., and Collins, G. (eds.)  Machine Learning: Proceedings of the Eighth International
Workshop.   San Mateo, CA: Morgan Kaufmann, 1991, pp. 3-12.

Knowledge Systems Laboratory     July 1991
Report No. KSL 91-47

Design Rationale Capture as Knowledge
Acquisition Tradeoffs in the Design of

Interactive Tools

by

Thomas Gruber
Catherine Baudin

John Boose
Jay Weber

KNOWLEDGE SYSTEMS LABORATORY
Department of Computer Science

Stanford University
Stanford, California 94305



1

Design Rationale Capture as Knowledge Acquisition:
Tradeoffs in the Design of Interactive Tools

Thomas Gruber
Knowledge Systems Lab, Stanford University

701 Welch Road, Building C
Palo Alto, CA 94304

gruber@sumex-aim.stanford.edu

Catherine Baudin*

Artificial Intelligence Branch
NASA Ames Research Center - M.S. 244-17

Moffett Field, California 94035
baudin@pluto.arc.nasa.gov

John Boose
Boeing Advanced Technology Center, 7L-64
Boeing Computer Services, P.O. Box 24346

Seattle, WA  98124
john@atc.boeing.com

Jay Weber
Lockheed Artificial Intelligence Center
3251 Hanover Street, O/96-20, B/254F

Palo Alto, CA 94304-1191
jay@laic.lockheed.com

Abstract
This paper introduces a panel to be held at the
Knowledge Acquisition Track of the Machine
Learning Workshop (ML91).  This panel will
focus on the problem of acquiring design
rationale knowledge from humans for later reuse.
The design of tools for design rationale capture
reveals several fundamental issues for
knowledge acquisition, such as the relationships
among formality and expressiveness of
representations, and kinds of automated support
for elicitation and analysis of knowledge.  This
paper sets the background for discussion by
identifying dimensions of a design space for
design rationale tools, and then includes position
statements from each panelist arguing for various
positions in this space.

1 THE PROBLEM OF DESIGN
RATIONALE CAPTURE

For many engineering tasks, including redesign,
verification, and diagnosis, it is important to know why
an artifact was designed the way it was.  Design rationale
is a general term referring to the knowledge or reasoning
underlying a design.  Although there is wide agreement
that design rationale is valuable knowledge, there are few
means for effectively acquiring it.  Technology for
recording and making this knowledge easily accessible
could be used to facilitate collaborative work among
designers and to support  communication with people
who make decisions about manufacturing, operations
procedures, diagnostic procedures, configuration, testing,
and marketing.  Yet today design rationale information is
hard to elicit from designers, fragmented, easily lost, and
generally not captured in machine-intelligible form.

Understanding the rationale of a design often requires a
broad range of knowledge, including the design
requirements (including constraints and evaluation
metrics), the structure of the artifact, the reasons for
choosing particular components or implementation
approaches, the assumptions about the context in which
the artifact is to be used, and the institutional experience
of designing and manufacturing similar artifacts.

In this paper we frame design rationale capture as a
knowledge acquisition problem, where the task is to
acquire design knowledge in a form that can be reused
with automated assistance (e.g., for information retrieval
or generation of rationale explanations).  Several
approaches have been proposed to facilitate the capture
and reuse of design rationale.  The panelists will present a
few exemplary approaches, and explore some of the
tradeoffs.  In particular, the discussion will focus on the
degree of autonomy versus interactivity in these
knowledge acquisition systems.

2 SOME APPROACHES TO DESIGN
RATIONALE CAPTURE

Although still in the research stage, a range of approaches
have been proposed for providing automated assistance to
capture and reuse design rationale knowledge.  Some
notable points in the space include:
› Provide electronic notebooks that encourage

designers to record their design processes on line
[Lakin et al., 1989].

› Elicit semistructured text about the design
rationale, based on argument-style discussions
among designers [Conklin and Begeman, 1988;
Lee, 1990; McCall, 1986].

› Elicit semistructured arguments in the context of
knowledge-based design critics [Fischer, McCall,
and Morch, 1989].
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› Treat designs as parametric decisions (about
components, etc.), and elicit reasons pro and con
for alternatives in a decision-theoretic or similar
framework [Boose, 1991, and Section  5].

› Elicit explicit enumerations of design alternatives,
components, constraints, and classes of solutions,
and present the data in graphical form to facilitate
human search and evaluation of evolving designs
[Shema et al., 1990].

› Record a history of design choices made by
designers using a shared design memory that
indexes decisions by artifact structure (e.g.,
component selection) and function [Mark and
Schlossberg, 1990, and Section 8].

› Elicit machine-generated demonstrations of
intended artifact behavior and operating
assumptions from designers using simulation tools
with model-formulation and explanation-
generation capabilities [Gruber, 1991, and
Section 6].

› Infer design rationale from engineering models of
the behavior of  a device and formal specifications
of its requirements [Baudin, Sivard, and Zweben,
1989, and Section 4].

All of these approaches deal with the acquisition of
different aspects or abstractions of design knowledge.1

They also occupy different locations on a continuum that
might be characterized as "degree of automation,"
ranging from relatively low automation for the notebook
and hypermedia-based elicitation approaches to total
automation (modulo the model formulation) of the
rationale-generation approaches.  Each point on this
dimension makes certain cost/benefit tradeoffs and
feasibility assumptions, as we shall see in the position
statements of the panelists that follow this introduction.
However, on careful inspection we find the spectrum to
be multifaceted; there are several related (but not quite
correlated) dimensions of this design space for design
rationale capture (DRC) tools.  To set the context for
discussion, we first characterize these dimensions.

3 DIMENSIONS OF THE DESIGN SPACE
FOR DRC TOOLS

Formality  (structured format versus free-form data).
Searle [1990] defines a formal representation as one that
is syntactically formed and can be parsed into
constituents that can be assigned a semantics.  Design
notebooks and similar "natural" media (› ) are quite
informal;  hypertext tools (› › ) are semiformal  in that the

1Some of the cited work covers more than one of the
approaches as categorized here (e.g., mixing formal models and
semistructured annotations).  This introduction is not intended
as a proper survey of the literature.  See the latter sections and
the cited papers for more detail.

data are indexed by links and node types enforced by the
tool; decision supports aids (›  › ) are semiformal in that
they structure the data into formal categories such as
alternatives and evaluation criteria; design memory (› ) is
more formal because it provides a richer index into
decisions based on formal artifact descriptions; rationale-
generation schemes (› ›) are very formal—they work
from engineering models in forms such as differential
equations.

Machine-interpretability (versus only human readable).
Closely related to formality is the extent to which
computer programs can interpret the captured data and
provide value-added services.  Systems that operate on
semiformal representations can interpret the formal parts
of the representations, provided the links and types can be
given operational semantics .  Consider, for example, a
tool that supports a link called "decision-depends-on"
between nodes of type "decision" and other data such as
"availability-of-materials."  The decision-depends-on link
could be interpreted by a program that tracks changes to
nodes and alerts the user that a particular design decision
has been affected when, say, something causes a node
describing availability-of-materials is changed.  Note that
it is necessary that the links and node types be formal, but
that is not sufficient for machine-interpretability.  In
addition, the user must instantiate the nodes and links in a
way that is consistent with their operational semantics
(i.e., "decisions" are things that can be affected by
changes to things linked to them by decision-depends-
on).  Highly interpretable representations can support
more sophisticated services; an explanation of rationale
based on simulation or analysis (›  › ) could determine
whether a change in materials could actually change the
required behavior of the device.  Similarly, decision-
support tools can assess the sensitivity of decisions
(utility measures) to changes in  parameters such as cost.

Interactivity (interactive elicitation versus automated
acquisition / generation).  In cases where a complete
model of the domain is available to the machine
(including the engineering principles, possible
alternatives, utility functions, etc.), a tool could infer the
rationale for a design.  This is the ideal case for a system
of category › .  In practice, all design capture tools need
to interact with humans.  On the semistructured end of the
scale (› ›  ›  › ), tools depend on the users to invent
useful categories and relations, and use the representation
consistently.  Tools of the more structured sort (›  › )
have domain-specific knowledge of the representation
built in (e.g., relations between component choices and
cost; indexing by part-of relations).  These tools can give
the user a palette of choices for these built-in relations,
and do simple syntactic checking.  Tools that depend on
generative models (›  › ) need to provide model-
formulation assistance: help with the task of constructing
models.  They could provide model libraries, for instance,
that offer pieces that can be assembled into coherent
engineering models.  Note that the amount of interactive
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assistance that a tool can offer may increase with use.
This is the strategy of design memory (› ); as designers
use the tool, they contribute to a growing memory of
previous designs that can be reused.

Analyzability (amenable to completeness and coherence
analysis).  Given a partial theory of design (e.g., as
maximizing expected utility in a decision space, or as
constraint satisfaction), the machine-intelligible portion
of captured data can be analyzed for completeness and
coherence (e.g., consistency with constraints).  For
example, design critics (› ) can check design choices for
constrain violations.  Decision-support tools such as ›
can inform the user of highly correlated (redundant)
criteria and estimate the utility of alternatives.  Issue-
based hypertext tools (› ) can check for positions without
support.  Model-based tools (›  › ) can check for
underconstrained behavior models, such as
underspecified initial conditions in a simulation.

Expressiveness (representational adequacy).  The degree
of structure imposed by a formal representation, or the
limited set of services provided by a tool, can inhibit the
ability of the designer to "say what she means" — and
therefore limits the capture of information potentially
useful to a human observer.  Design notebooks (› ) are
optimized for expressiveness.  Other tools may allow a
"trap door" to free text.  However, the presence of a
comment field does not make a medium expressive if the
tool offers no incentive for the user to fill in the field.

Cost of acquisition.   It is often stated that designers
resent anyone "getting in their way" during design.  But
design knowledge ultimately must come from those in the
know.  A design rationale capture system must address
the issue of the cost of eliciting the desired information,
whether by lowering the barriers (as aimed for in › ) or
raising the incentive to provide the data (with design
support services, such as design checking rules (› ),
information management (›  › ), or information retrieval
(› ).

Utility of captured knowledge.  Of course, a
fundamental dimension for the design of design rationale
capture tools is the service they potentially provide.  Most
proposals address problems of organizational
communication and memory (designers repeating the
mistakes of the past; designs thrown "over the wall" to
manufacturing, etc.).  Measures of utility include design
quality, engineering productivity, maintainability of
products, usability and acceptance of tools by designers.
Is there an inherent tradeoff between cost of acquisition
and utility of captured knowledge?  The issue is complex,
since the cost and benefits may be experienced by
different people.
Panelist Statements
In the following sections, panelists present their
approaches to providing automated design rationale
support.

4 THE INFLUENCE OF USE ON DESIGN
RATIONALE ACQUISITION
Catherine Baudin and Jody Gevins*

Design rationales—reasons for design choices—are
perishable pieces of information that are tedious to record
during the design process and difficult to recover after the
design has been carried out. Understanding reasons for
design decisions is important both to enable new
designers to learn from previous experience and to
automate the extraction of design knowledge from design
cases. Accordingly, design rationale capture can serve
different purposes such as: (1) conservation of
corporate memory—when a design is taken over by
another team of engineer or to guide later design changes,
(2) tutoring—to teach design to novices, (3) automated
acquisition of design knowledge—to refine a set of
existing body of design knowledge [Mitchell, 1985], to
facilitate design reuse [Mostow and Barley, 1987], or to
track the decisions that should be revised when the design
specifications are changed.

One way of acquiring design rationale is to capture it
informally as text strings or to have the expert record on
an audio device the reasons of his/her decisions. The
advantage of such informal approach is that the
information is relatively easy to acquire. The main
problems are: (1) canned-text can only be interpreted by
humans; (2) not all decisions can be documented.

The problem with having the designer entirely controlling
the acquisition of design rationale is that he must decide
which decisions are important to explicitly justify. This
choice, however, has an impact on how the acquired
knowledge can be used and by whom: experienced
designers, novices, or programs that need everything
spelled out. When design rationale is geared toward
novices or programs, almost all design operations have a
purpose that is important to explain. This consideration
motivates the search for techniques to automate design
rationale acquisition.

In fact, if the goal of design rationale acquisition fits into
the larger picture of acquiring formal design records (to
facilitate automated design reuse, computer aided design
or tutoring for instance), a plausible research is to focus
on how general knowledge about the objects being
designed relate to design rationale capture.

These considerations raise three issues: (1) What design
knowledge should be acquired in order to capture design
rationale? (2) How should design rationale be
represented? (3) When should this knowledge be
captured? During the design activity? after the facts?

*of Sterling Federal Systems, also at NASA Ames.
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Model-based acquisition of design rationale
We have tried a model-based approach [Baudin, Sivard,
and Zweben, 1990] to design rationale acquisition with
the goal of acquiring design representations for
automated redesign (to assist a designer in modifying
previous design to accommodate a change in
specifications). We experimented with the method for the
design of a class of mechanical devices.

The method infers design rationale by relating design
choices to the satisfaction of the design requirements and
constraints.  The system uses knowledge about the
structure and behavior of a device and knowledge about
the designer's goals to justify design choices. The input of
the program is a library of physical components, a design
state (assembled by laying out elements selected in the
component library), a set of alternative extensions to this
design state, and a choice. The program evaluates the
impact of each design extension on the specifications and
attempts to justify the designer's choice with respect to
the requirements that are satisfied by the solution. In fact,
the system identifies the requirements and constraints that
may be relevant to explain the choice and interacts with
the user to validate its explanation. At this point the user
can validate the criteria selected by the system, rule out
some criteria, or enter new criteria which are added to the
existing design requirements.

The advantages of this method are: (1) it relates decisions
to the design requirements and constraints. Thus when a
specification changes, the system can evaluate the impact
of the change on the requirements and can retrieve from
its memory a more suitable alternative; (2) The
knowledge needed to infer design rationale can also be
used to help the designer evaluate the impact of his/her
decisions at design time. Design rationale is derived from
analytic knowledge of how to evaluate a design; (3) new
design criteria are acquired opportunistically by
interacting with the user when the decisions cannot be
automatically explained ; ›  the method has the potential
to explain any  decision.

This method relies on the acquisition of such knowledge
as: (1) a model of the device structure and behavior, (2)
representations of design requirements and constraints
that are amenable to evaluation, (3) alternative design
solutions.

Acquiring design models
One way of acquiring formal design records is to
integrate their acquisition with an automated design aid.
In principle, an approach that acquires design rationale by
interacting with the user during  the design activity
appears to be ideal because design rationale is captured as
a side effect of having the user interact with the computer
aided design tool. We implemented a prototype whose
goal is to help a user evaluate the impact of a design
choice on the design requirements. However, this type of

design aid is easier to implement for routine or detailed
design where a set of predefined components can be
identified, than for conceptual or innovative design
(where design rationale capture might be most needed).

In the early design stages, most decisions rely on
simplifying assumptions and approximate computations.
To adapt our performance tool to the early stages of
mechanical design, we investigate methods to assist
designers in their  modeling activity by helping them
select, manipulate equations, and keep track of the
assumptions that support the use of approximate models.

Conclusion
At first sight our model-based approach appears to have
shifted the problem of acquiring design rationale to the
(possibly) more difficult task of acquiring formal models
of the objects being designed. On the other hand the
benefit of acquiring device models goes beyond the sole
purpose of capturing design rationale. In our case we
wanted to acquire design records for computer assisted
redesign and design rationale was only an (important)
part of these records.

In general, the selection of a rationale acquisition method
should take into account: (1) how this task fits in the
larger picture of acquiring knowledge about how artifacts
are designed; (2) who will be the consumer of this
information—experienced designer, novices or programs.
The context in which design rationale is to be used also
has an impact on when this knowledge should be
acquired. A fact such as:  "the designer inserted a bearing
to reduce the friction between these two components" is
common sense knowledge to any domain expert and can
be documented any time after the design has been
achieved. On the other hand a fact such as: "a type x
component has been preferred to the type y component
because there were no type y parts in stock at this time"
would be difficult to recover two years after the decision
was made.

5 BLENDING MACHINE LEARNING
AND INTERACTIVE ELICITATION
FOR DESIGN RATIONALE CAPTURE
John Boose, Jeff Bradshaw,* David Shema*

Knowledge Acquisition and Design Knowledge
Capture
Currently, much of the information regarding decision
alternatives and trade-offs made in the course of a major
program development effort is not represented or retained
in a way that permits computer-based reasoning over the
life cycle of the program.  The loss of this information
results in problems in tracing design alternatives to
requirements, in assessing the impact of change in
requirements, and in configuration management.

* also at the Boeing Advanced Technology Center.
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To address these problems, we are studying the problem
of building an intelligent, active corporate memory
facility which would provide for the capture of the
requirements and standards of a program, analyze the
design alternatives and trade-offs made over the
program's lifetime, and examine relationships between
requirements and design trade-offs [Boeing Computer
Services, 1989a,b; Boose, 1991].  Early phases of the
work have concentrated on design knowledge capture for
the Space Station Freedom.  We have demonstrated and
are extending tools that help automate and document
engineering trade studies, and we are developing another
tool (DART) to help designers interactively explore
design alternatives and constraints. Many of these tools
are based on techniques that were previously developed
for knowledge acquisition systems [Boose, Shema, and
Bradshaw, 1989].

Through the series of demonstrations, we are showing a
novel integration and extension of design knowledge
capture ideas by:

a. Tailoring knowledge acquisition and process
control tools for engineering trade studies, a
significant and feasible part of design knowledge
capture.

b. Digitally recording speech as an unobtrusive
method of capturing design rationale at the trade
study workstation.

c. Designing an interactive design alternative
generation aid.

DART and Machine Learning
NASA is sponsoring the development of DART, the
Design Alternatives Rationale Tool, as part of its overall
design capture effort for Space Station Freedom [NASA,
1988a,b].  Methods in DART are based in part on earlier
tools built in our laboratory and include interactive and
automatic learning methods.  DART uses an extended
repertory grid model and is being applied by NASA to
engineering trade studies and other areas.  Knowledge
acquisition tasks performed by DART include eliciting
distinctions, decomposing problems, combining uncertain
information, incremental testing, integration of data
types, automatic expansion and refinement of the
knowledge base, use of multiple sources of knowledge,
use of constraints during inference, and providing process
guidance. DART interviews experts and helps them
analyze, test, and refine the knowledge base. Expertise
from multiple experts or other knowledge sources can be
represented and used separately or combined. Results
from user consultations are derived from information
propagated through hierarchies.

The repertory grid bears a close resemblance to a
traditional trade study matrix.  Design alternatives are
listed and DART uses several interviewing strategies to
elicit criteria.  Analysis methods in DART help engineers
refine and dynamically test the information in the matrix.

Machine learning in DART takes place in interactive and
automatic forms. Interactive forms include implication
generation, analysis, and review. Automatic forms
include strategies embedded in the inference engine and
methods to automatically improve knowledge bases.

Knowledge Base: SS_Technology
Problem       : co2_removal
Engineer      : JK
---------------- Weight Type Criterion
1   1   5   1   | 0.80  ORD  safety
                |      (1/does_not_require_hydrogen_-_safe-5/requires_hydrogen_
                |       -_not_as_safe)
1   2   2   4   | 1.00  ORD  maturity (1/mature-5/not_mature)
250 200 160 180 | 0.60  INT  weight (160/low_weight-250/high_weight)
5   1   5   5   | 0.40  ORD  chx_impact
                |      (1/system_impact_on_condensing_heat_exchanger-5/no_
                |       system_impact_on_condensing_heat_exchanger)
13  17  10  13  | 0.60  INT  volume (10/low_volume-17/high_volume)
650 600 150 450 | 0.60  INT  power (150/lower_power-650/higher_power)
------------------------------------------------------------------------------
|   |   |   |         Alternative
|   |   |   two_bed_molsiev
|   |   edc
|   solid_amine_water_desorb
four_bed_molsiev

A repertory grid in-progress used as a matrix for a carbon dioxide removal trade study.
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Implication Analysis
Inductive implications between criterion values are
computed with an algorithm developed by Gaines
[Gaines and Shaw, 1987]. A repertory grid is used as a set
of examples. Criterion values are viewed as logical
predicates, alternatives are the operands of the predicates,
and ratings are fuzzy truth values. Implications are shown
graphically or listed textually. The strength of each
implication is shown, either by listing the score or by
varying the thickness of the arrow on the graph.
Implications show relationships at higher levels of
abstraction implied by a repertory grid. If the engineer
disagrees with an implication, DART helps the engineer
refine the grid. Frequently, the engineer can think of an
exception to the implication (a new design alternative)
that disproves it. This alternative is entered, rated, and the
implication strength is reduced appropriately. Sometimes
implications point out inconsistencies in the way the
engineer is using a criterion. In such cases a
specialization and generalization dialog (laddering) is
used to help the engineer decompose inconsistent criteria
into consistent sub-criteria.  For example, Figure 2 shows
the implication analysis that "automated PPA testing" is
implied by criterion values "hard to fix," "high PPA
costs," and "low PPA reliability." (from an on-board
circuit breaker trade study).

Figure 2: Results of implication analysis.

Reasoning
DART can represent connected sets of matrices for
complex trade studies. In a complex trade study the
engineer may not want to rate every possible cell in every
possible matrix implied by DART's hierarchical matrix
organization. Engineers tend to rate the leaf cells of
hierarchies leaving cells at higher levels unrated. If the
hierarchies are deep the engineer may rate no more than
ten or twenty per-cent of the existing matrix cells.
However, DART's inference engine expects all cells to be
rated so that alternatives may be scored properly for each
observation, preference, or constraint. DART has several
mechanisms for "filling in" missing ratings as needed.
Lower level ratings can be abstracted to higher levels
(induction); ratings of parent values can be inherited
down to child ratings (deduction); best guesses can be
made by looking at siblings' ratings if they exist or by
examining the functional similarity of criteria (analogy);
users can supply their own application-dependent
derivation functions. These mechanisms are used directly
by the inference engine and to produce derived matrices
that show DART's best inferences for missing ratings.

New Terms
In general, learning systems cannot extend or modify
their initial vocabulary to generate new descriptors (new
terms) when needed. There are two types of new terms:
terms resulting from the compilation or decompilation of
existing terms and truly new terms that are orthogonal to
the original ones. DART's clustering mechanism can help
engineers identify compilations of existing terms when
engineers are asked to label cluster junctions. DART's
automatic grid improvement mechanism addresses part of
the second problem. New unlabeled criteria (terms) are
produced based on sets of performance expectations, and
the engineer is asked to name them [Shema and Boose,
1988].  DART identifies the need for and characteristics
of a new term that is guaranteed to improve the
performance of the knowledge base and the engineer is
asked to supply the name of the term. For both types of
new terms, allowing the engineer to interact with
clustering and automatic improvement mechanisms
seems to be a key to effectiveness.

Future Work
In future work we will link DART to ARMS, NASA's
requirements management system for Space Station
Freedom. Capturing this design information should help
solve the critical problems of tracing design alternatives
to requirements and assessing the impact of changes in
requirements.

6 EXPLAINING DESIGN RATIONALE
WITH SIMULATION
Thomas Gruber

The problem of design knowledge capture is to acquire,
in a reusable form, the human knowledge underlying a
design, including the structure of the artifact, the rationale
for choosing particular components or implementation
approaches, the assumptions about the context in which
the artifact is to be used, and the institutional experience
with designing and manufacturing similar artifacts.
Today this knowledge is recorded in written form (text
and graphics), if at all, which makes it difficult to access
and reuse.  I believe that the key to addressing this
problem is to change the form in which the knowledge is
represented—by designing a formalism and an interactive
medium by which humans can contribute to and access a
shared corpus of design knowledge.

What characteristics do we want from a representation for
design knowledge capture?  I claim we need a
representation that is comprehensible to both human and
machine.  That is because a representation of design
knowledge has to serve two roles: as a communication
vehicle among humans and as a formalism upon which to
provide automated services such as completeness analysis
and dependency maintenance.  Furthermore, I propose
that this knowledge can be acquired from people using
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tools that generate human-comprehensible explanations
from machine-comprehensible models.

Consider the case at hand: acquiring a rationale for a
design.  The task is to acquire the information sufficient
to communicate to a consumer of the information (who
may be the same designer) why an artifact was designed
as it was.  There are several kinds of reasons a designer
might give.  In general, one can characterize a rationale
as an explanation relating the design decisions made to
requirements and other criteria [Gruber and Russell,
1990].

For design criteria that can be evaluated with objective
metrics such as monetary cost, weight, and availability,
and when design decisions can be formulated as choices
among alternatives, formalisms and reasoning
mechanisms from decision theory and operations research
can support rationale explanations.  For instance, if a
certain kind of material was chosen for constructing a
housing, one could show an analysis justifying the choice
of material in terms of minimizing cost and weight, while
satisfying the availability constraint.  A design-support
tool could provide electronic means for recording this
information (e.g., in alternative/criteria  charts) and, for
operational constraints, offer design checking services.

For other kinds of rationale, such as explaining the
intended function or purpose of an artifact, it is difficult
to even represent the requirements, much less to automate
an analysis that can prove that  a given structure achieves
its intended purpose.   Nonetheless, it is extremely
valuable to capture this teleological knowledge—about
the intended function or purpose of a design—in a
reusable form.   Natural language descriptions of intended
function and assumed operating conditions are typically
incomplete, implicit, or missing in design documentation
today.  To acquire this more elusive kind of design
rationale knowledge, we need a representation and
interface metaphor other than  alternative/criteria charts
and semistructured text.  For a solution, we have turned
to the technology for the interactive construction of
engineering models and explainable simulations.

Explainable Simulation as a Communication Medium
In engineering practice, simulation is used to predict the
behavior of engineered artifacts.  A simulation requires
behavior models, typically in the form of equations, that
describe the behavior of individual components and
general physical processes.  The simulation predicts the
system behavior that arises from the interactions of
components and the operating environment.  The results
of a simulation is a description of the behavior of the
modeled system, presented in the form of graphs,
animation, or other forms.

Simulation can also be used to communicate  a behavior
of interest, as is the practice in simulation-based tutoring.
A simulation scenario focuses on particular aspects of an
artifact modeled with a specific set of assumptions and

approximations to describe a behavior of interest.
Although the computation of behavior predictions from
models is an automated process, the choices about what is
relevant to model and predict is an interactive activity
involving human engineers making assumptions,
constructing models, and setting up scenarios to answer
some class of questions about the behavior of an artifact.

We are exploring the idea of using explainable simulation
as a communication medium for design rationale [Gruber,
1991; Gruber and Russell, 1990].  To document the
intended function of a device, the author constructs a
demonstration  of the device performing its intended
behaviors in its assumed operating context.  Instead of
writing text or producing a videotape mockup, the author
engages in a dialog with a knowledge-based modeling
and simulation environment, telling the machine what it
needs to know to generate a demonstration of some
behavior of interest.  What the machine needs to know is
the configuration of  a simulation scenario: the
engineering models, the initial conditions, the relevant
behaviors of interest.  Thus the user documents a design
by giving a program sufficient information to generate  an
explanation of how the intended function is achieved by
the design.

As part of the How Things Work project we are building
a device modeling environment called DME [Iwasaki et
al., 1989]. DME supports the model formulation by
helping users to construct engineering models from
libraries of partial models, selecting and composing
relevant model fragments to produce a simulation.
Explicit representation of the derivation of the model
used in simulation supports rich explanations of the
results.  Using DME, one can build scenarios
demonstrating behaviors of electromechanical devices.

The benefits in using simulation as a medium follow from
the fact that the information that the engineer enters is
guaranteed to be in machine-intelligible form.  Because
the explanation of intended behavior is generated from
underlying models, the same knowledge can be used to
answer questions not typically anticipated by the author
of static documentation (e.g., minor perturbations on
operating conditions and other "what if" queries).
Furthermore, since the artifact descriptions and behavior
models are constructed on-line with machine assistance,
the terms in the explanation, such as the components that
played a part in achieving a function, can be effectively
indexed with other on-line information, such as the cost,
reliability, and availability.

Furthermore, by acquiring this knowledge in an
interactive environment, a design knowledge capture tool
can provide  structured interfaces to help with elicitation
and offer computational feedback on the implications of
what is entered.  For example, a model-formulation
system could determine when the set of initial conditions
is incomplete (with respect to a simulation) and prompt
the user for the missing information.   In contrast, when
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writing textual documentation, it is easy to forget to
specify details of the assumed operating conditions or to
be imprecise about the expected behavior.

New Knowledge Acquisition Problems
The major technological bottleneck in this approach is
model formulation.  I view this as a new frontier in
knowledge acquisition research.  The model formulation
task is to help people construct models of structure,
behavior, and function of designed artifacts.  This entails
providing an appropriate modeling language, a library of
partial models to reuse, and intelligent assistance with
making assumptions,  approximations, and levels of
abstraction.  A related problem is machine-generated
explanation of how things work. The explanation task is
to provide human-comprehensible summaries of the
results of a simulation, relating the answers to the initial
questions for which the models were formulated.
Research in qualitative reasoning about physical systems
is beginning to show some progress in model formulation
and explanation [Addanki, Cremonini, and Penberthy,
1989; Crawford, Farquhar, and Kuipers, 1990; Forbus
and Falkenhainer, 1991; Iwasaki, 1990], but the problems
remain essentially open.

Discussion
To address the hardest problems of design knowledge
capture requires basic research in knowledge
representation and automated reasoning, but the payoffs
of acquiring design knowledge in completely operational
forms would be high.  In fact, they must be high or the
designers will have little incentive to use the tools.

For more immediate application, approximate solutions
can be pursued.  If design rationale is an explanation of
design decisions to requirements and criteria, weaker
forms of explanations may be explored.  For example,
when real utility functions evaluating design decisions on
criteria are not available, approximate, heuristic schemes
such as rating grids may be used [Section 5].  Similarly,
when the domain models are not available for generating
simulations that account for intended function, it can be
useful to merely record (by name) the structure and
behavior of interest in achieving a function.   For
instance, a satellite designer may note that achieving the
function of a stable, limited power supply for the
instruments depends on the type of  batteries.  Then,
when the batteries are later replaced with the newest
technology, the dependency can be tracked and the user
can be notified to check to see whether the output power
is still to specification.  (If the models were available to
generate the original documentation, then the design
dependency might be verified automatically.)

This intermediate solution reflects the basic tradeoffs
between automation and interactivity.  Greater
automation requires a more formal, machine-interpretable
representation (engineering models versus textual

arguments), which is amenable to completeness and
coherence analysis (checking for consistent sets of
equations and initial conditions), and which incurs greater
cost of acquisition (the model formulation problem).
Less automation puts more burden on the interactive user
to anticipate the relevant design information (the design
constraints worth checking) and to interpret results
(determine whether a flagged design dependency is
actually significant).

7 NO STRINGS ATTACHED: DEEPER
DESIGN KNOWLEDGE CAPTURE
MEANS BETTER COST/BENEFIT
Jay Weber and Jon Schlossberg

If automated design knowledge capture is going to be
worth the investment of a designer's time and energy,
systems must provide a rich set of design services.  Many
of these services  such as design experience indexing,
design dependency (truth) maintenance, and requirements
consistency checking require deep representations of
design moves and rationale.  In contrast, the state-of-the-
art in design knowledge capture is free-form text
structured by a representation of argumentation [Conklin
and Begeman, 1988].  The state-of-practice is a word
processor.  Neither supports the services above.  We
recognize that moving to more machine-interpretable
representations may involve a greater investment on the
designers part, but our position is that the cost/benefit
ratio is potentially more favorable with deeper design
knowledge capture.

Consider the precedent of CAD systems, where formality
has led to a better cost/benefit ratio.  As sophisticated as
they are, they place rigid constraints on what artifact
constraints a designer may describe, and how s/he may
describe them.  Yet designers use these systems instead
of the less formal pencil-and-paper medium (though not
in the early stages of design) because their investment in
the tool pays off in the form of services such as
simulation, drafting checking, and documentation. Like
with pencil-and-paper, design descriptions captured as
structured text are basically only good for one thing: later
examination by other designers or future selves.

The Design Memory effort [Mark and Schlossberg, 1990]
at the Lockheed AI Center concentrates on the
functionality made possible by deep representations of
design histories.  For example, design memory provides a
visualization of the evolution of compatible past designs,
in order to help designers chart the course of a new
design.  Defining a useful notion of design compatibility
involves more than superficial comparisons like common
keywords; it involves a system that appreciates the scope,
content, and consistency of the current design context.
Thus design memory has a commitment to a high-level of
machine-interpretability of design knowledge, and
therefore of its discourse with designers.
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A key feature of design memory is that the use of deep
design knowledge representations can actually lower the
cost of design knowledge capture.  This is possible
because the system can automatically present relevant
design experience, including the designer's rationale for
similar decisions, in similar circumstances.  The designer
can then simply affirm the rationale or make minor
modifications.  Thus one of the goals of design memory
is to make design knowledge capture a side-effect of
artifact description: the designer says what and the
system says why.

For example, Figure 3 uses a tree structure to visualize
the decision paths in solid-state flight-recorder designs.
Starting from the root, a designer has specified the reuse
of previous decisions by traversing the "use two
megabyte buffers," "use one multiplexer for all RAMs,"
and "make each RAM connected directly to output lines"
arcs, ending at the shaded node.  Because the user is
adopting already-captured design knowledge, the system
makes minimal demands on user-supplied information.
However, as the shaded node is a "dead-end", the user
most make novel modifications to continue, as pictured
by the dialog box in the upper left.  At this point the user
is "growing memory," thereby acquiring new design
knowledge, yet doing it as a step in the design process
and as a natural follow-on to design decision re-use.  This
points to the principal commitment on the part of Design

Memory: to incorporate design knowledge capture and
re-use into a paradigm for doing design.
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