
While You’re Away: A System for Load-Balancing
and Resource Sharing based on Mobile Agents

Niranjan Suri, Paul T. Groth, and Jeffrey M. Bradshaw
Institute for Human & Machine Cognition, University of West Florida

{nsuri,pgroth,jbradshuw] @ai. uwf edu

Abstract

While You’re Away (WYA) is a distributed system that
aggregates the computational power of individual
computer systems. WYA introduces the notion of Roaming
Computations - Java-based programs that move around
the network utilizing the resources of idle workstations.
WYA provides architectural independence and addresses
issues of convenience, security, and incentive for owners
of workstations.

WYA is based on the NOMADS mobile agent system,
which uses the Aroma Virtual Machine (VM) to provide
strong mobiliy, resource control, and resource
accounting. WYA currently runs on Win32 and UNIX
workstations but is being extended to work on other
computational devices such as television set-top boxes,
video game consoles, and Internet appliances.

1. Introduction

One of the goals of distributed systems is to aggregate
the computational power of several individual computer
systems. This aggregate computational power can match
or exceed the processing power of supercomputers while
at the same time lowering the cost/performance ratio
significantly. Systems may be classified into two kinds:
those that use dedicated groups of systems (such as
computational clusters) and those that use idle
workstations.

While You’re Away (WYA) is a distributed system
that leverages idle workstations to perform computations.
WYA introduces the notion of roaming computations,
which are extensions of mobile agents that move to and
out of workstations as the workstations become free and
busy. One advantage of using idle workstations is that
existing systems can be reused without incurring the cost
of dedicated clusters. However, WYA trivially extends to
support computational clusters by treating them as
workstations.

0-7695-1010-8/01$1O.OO O 2001 IEEE 470

WYA relies on the NOMADS mobile agent system
[11, which provides strong mobility for Java-based agents.
Unlike weak mobility, which requires that a mobile agent
restart execution after a move, strong mobility moves an
agent’s execution state with the agent. NOMADS also
supports forced mobility, where external events can
forcibly move agents from one system to another. Since
the execution state of agents is also moved, agents resume
execution on the new system without any knowledge of
the forced migration. Secondly, NOMADS provides
dynamic resource control and resource accountin;=
mechanisms. Resource control allows limits to be placed
on the resources consumed by any agent and can be used
to protect hosts against malicious or buggy agents as well
as to prioritize the execution of agents. Resourcc
accounting allows the system to measure and keep track of
the resources consumed by agents on a host.

Important features of WYA include:

Architecture Independence: Roaming computations
can be moved across systems of different architectures.
Therefore, it is no longer necessary to have identical
workstations for load-balancing.

Workstation Availability: When an end-user wishes to
use his or her personal workstation, any roaming
computations on that workstation are immediately moved
out using the forced migration capabilities of NOMADS.
This is critical to make sure that users do not view the
roaming computations as bothersome.

Workstation Security: Using the resource control
mechanisms of NOMADS, WYA guarantees that the
resources of user workstations are not abused.

User Incentive: WYA uses the resource accounting
mechanisms to keep track of the resources used b;y
roaming Computations. As a user’s workstation gets used,
the user accumulates points that could conceivably be
used for a variety of purposes.

The rest of this paper is organized as follows. Section
two briefly describes the NOMADS system upon which
WYA is based. Section three presents an overview of the
design on WYA. Section four the WYA programming
API and the implementation of the server. Section five
discusses transparent resource redirection. Finally, section
six concludes by discussing future work.

2. Overview of NOMADS

The NOMADS mobile agent system [l] was
developed to overcome limitations of current Java-based
systems. NOMADS offers two key capabilities: strong
mobility (i.e., the ability to capture and move the
execution state of the agent along with the agent at the
demand of the agent, the system, or a user) and strong
security (i.e., the ability to securely execute an agent while
accounting for and controlling the agent’s access to
system resources).

NOMADS introduces two forms of strong mobility -
synchronous and asynchronous. In the first case, an agent
is free to request a move operation at any point in its
execution. NOMADS will capture the execution state of
the agent, move the state to the destination system, and
continue the execution of the agent. The agent resumes
execution at the very next statement after the request to
move. NOMADS refer to this form of strong mobility as
anytime mobility. It should be noted that an agent that
uses anytime mobility could always be rewritten to work
with weak mobility (i.e., systems that do not move
execution state, but restart the execution of the agent on
the destination system). However, the burden would then
lie on the agent developer to program make the agent
always maintain its own execution state. Therefore,
anytime mobility greatly simplifies the task of writing an
agent.

The second form of strong mobility is referred to as
forced mobility. In this case, an agent may be moved from
one system to another due to an asynchronous external
event that may be generated by the agent system or a user
or administrator. The agent’s execution state is
transparently migrated to the destination platform where it
resumes execution. Note that the migration can be
completely transparent to the agent, which simply
continues executing the next bytecode instruction on the
new platform. An agent can remain completely oblivious
to the fact that it was moved to a new location (much like
a process is oblivious to the fact that an operating system
may be constantly saving and restoring the state of the
process during multitasking). While it may be possible to
simulate forced mobility in agent systems that do not

move execution state, doing so requires constant polling
which results in an inefficient system.

The second key capability of NOMADS is resource
accounting and control. NOMADS allows the resources
consumed by any agent to be measured and queried.
Moreover, various limits may be placed on the resources
that can be consumed by an agent. Limits include both
rate limits (e.g., percentage of CPU usage, disk and
network readwrite rates) and quantity limits (e.g.. disk
spaced used). These resource limits may be dynamically
adjusted at a fine level of granularity and are enforced
transparently to the agent running within NOMADS.

The core component of NOMADS is the Aroma
Virtual Machine (VM) [2] . Aroma is designed to support
state capture, resource control, and resource accounting.
Unlike other systems that use a modified Sun Java VM,
the clean-room nature of the implementation of Aroma
allows the VM (and consequently NOMADS and WYA)
to be distributed without any licensing constraints.

3. Design of WYA

The current design of WYA is optimized for a Local
Area Network (LAN) environment. The system includes a
coordinator (called the WYA Server) and one or more
workstations. Users submit roaming computations to the
coordinator, which then distributes them to idle
workstations. When workstations become busy, the
computations are sent back to the coordinator. The
coordinator also keeps track of the resource consumption
matrix, which determines the points earned by end-user
workstations and points consumed by jobs.

WYA uses two types of workstations. Idle
workstations are systems where a user is logged in but is
currently inactive. Free workstations are systems that do
not have a user logged into the console. Workstations that
have a console user rely on a special screen saver to detect
idle time. The screen saver also shows status information
such as the computations currently running, resource
consumption meters, and total points accumulated. For
workstations that are free, WYA uses the CPU load to
decide whether to send computations to the system.

Figure 1 shows the steps that normally occur in WYA.
The first step involves a user using the WYA launcher to
submit a job to the coordinator. The coordinator maintains
a job queue (which is currently FIFO). When a
workstation becomes idle and the WYA screen saver is
invoked, the screen saver notifies the coordinator, which
then sends a computation to the workstation. If the user
wishes to resume using the workstation, the screen saver,

471

before disappearing, will cause the computations to move
back to the coordinator. Note that a computation may
move back and forth between idle workstations and the
coordinator many times before completing. When the
computation finishes, the computation returns to the
original user’s workstation to report any results.

Also note that computations may move to free
workstations. In the case of free workstations, WYA
detects CPU idle time to decide to move computations to
a workstation.

4. Implementation

This section describes the API used by end-users when
developing roaming computations and also the
implementation of the WYA server.

4.1 Roaming Computation API

Figure 2 shows a typical roaming computation. Users
must extend the class RoamingComputation and define
three methods: init(), compute(), and report(). WYA
guarantees that the init() function will be executed on the
user’s workstation. Hence, the init() function should be
used by computations to perform such tasks as reading
data files or otherwise accessing resources that are only
available on the user’s workstation. After execution of
init() is completed, the computation is queued on the
WYA server until a workstation is available. The
computation is executed on any available workstation
until the compute() function returns. Then, the
computation is moved back to the user’s workstation and
the final report() method is executed. Computations can
write data files or carry out other tasks to convey the

results back to the user in the report() method.

Note that while the compute() method is executing, the
state of the computation may be captured, moved to the
WYA server, moved back to a (possibly different)
workstation, and restarted. This process could take place
many times before the compute() method completes arid
the computation is returned to the original user’s
workstation.

4.2 WYA Server

The WYA server maintains a queue of roaming
computations that are ready to execute. If a workstation
becomes available, the server is notified either by the
screen saver on the workstation or by the NOMAC6
service (if no user is logged in and the CPU usage is
below a pre-configured threshold). The server then
dequeues the first roaming computation and sends the
computation to the idle workstation. When jobs are sent
back to the server, they are placed at the end of the queue
(a simple round-robin algorithm).

After every iteration of a computation going to a
workstation and returning, the server queries the
workstation about the resources consumed by the
computation during the last iteration. The server uses this
information to build up a matrix of resources consumed by
a computation (for billing purposes) and resources
provided by a workstation (for compensation purposes).

5. Transparent Resource Access

Since the compute() method of the roaming
computation may execute on many arbitrary systems, the

Figure 1 : Life-cycle of Roaming Computations in WYA

47 2

compute() method cannot access any resources on the
user's workstation. Moreover, since the computation may
be moved from one system to another at any point in the
execution of the compute() method, the method cannot
even depend on accessing resources on the currently
running host.

However, WYA does allow support for network
endpoints to be used within the compute() method, In
particular, WYA relies on the mockets (mobile sockets)
[3] mechanism in NOMADS to allow roaming
computations to create and use a mocket (which is similar
to a socket) even though the computation may be moving
from workstation to workstation. Therefore, roaming
computations can read and write over the network without
having to reestablish any connections even though they
are being moved between systems.

6. Future Work

One key requirement that has not been addressed is
the notion of sub-computations. We will to provide a
mechanism for a computation to spawn sub-computations
and to wait for them to complete if necessary. These
computations will also be allowed to roam across
workstations as needed.

We are currently working on a mechanism to
transparently access tiles regardless of the location and
migration of the roaming computation. Coupled with the
existing Mockets service, transparent file redirection

would allow roaming computations to access both disk
and network resources.

We are also interested in expanding the WYA system
to work with other computational devices such as video
game consoles, television set-top boxes, and other Internet
appliances.

Finally, we plan to develop a Just-In-Time (JIT)
compiler for the Aroma VM. A JIT is key to providing
acceptable performance for roaming computations within
a VM environment.

7. References

[I] Suri. N.. Bradshaw. J.M.. Breedy. M.R.. Groth. P.T.. Hill.
G.A.. and Jeffers. R. Strong Mobility and Fine-Grained
Resource Control in NOMADS. Proceedings of the 2nd
International Symposium on Agents Systems and Applications
and the 4th International Symposium on Mobile Agents
(ASA/MA 2000). Springer-Verlag.

[2] Suri. N. Bradshaw. J.M.. Breedy. M.R.. Ford. K.M.. Groth.
P.T.. Hill. G.A.. Saavedra. R. State Capture and Resource
Control for Java: The Design and Implementation of the Aroma
Virtual Machine. Sumbitted for Publication.

[3] Mitrovich. T.S., Ford. K.M., and Suri. N. Transparent
Redirection of Network SockeB. OOPSLA Workshop on
Experiences with) Autonomous Mobile Objects and Agent-based
Systems. On-Line Reference - http://www-
useos.cs,umni.edu/-tripathi/Workshop.htmli.

import edu.uwf.nomads.wya.RoamingComputation;

public class Mycomputation extends RoamingComputation
I

public void init (String argstl)
t

1
/ / Perform any initialization required here

public void compute ()
I

}
/ / Actual computations go here

public vo id reportResults()
{

1
/ / Report results back to the user here

Figure 2: Sample Roaming Computation Demonstrating the API

473

http://www

