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Abstract. Process management is a method for improving Boeing’s business 
processes, however many aspects have been difficult to implement. eQuality is a 
software system based on  a framework called DDUCKS that is being designed to 
support the process management life cycle. We take a knowledge acquisition 
approach to the development of the tool, emphasizing the importance of mediating 
and intermediate knowledge representations. Sharing and reuse of tools, models, and 
representations is facilitated through a layered architecture. eQuality’s process 
documentation capability includes a number of views, that can be used either in 
sketchpad or model mode. Using the views, an integrated business enterprise model 
may be developed. Analysis and simulation tools supporting process improvement 
are implemented with attribute, function, and task editors that make use of a user 
scripting language and extensible function library. A virtual project notebook is used 
to organize project information and help facilitate group meetings. 

 

1 Process Management at The Boeing Company 

The Boeing Company is undergoing fundamental changes in the way it manages its 
business processes. There are many catalysts for these changes, springing from both 
internal and external sources — for example, the Boeing Process and System Strategy, the 
need for concurrent product definition on the new 777 plane, cost management initiatives, 
CALS, and customer demand for low cost and high quality. Boeing CEO Frank Shrontz 
[72] has made continuous quality improvement the company’s number one objective, 
affirming that it constitutes “the cornerstone of our business strategy to be the world’s 
leading aerospace company.” 

In 1988, the company undertook a study of traditional aviation design and manufacturing 
processes. As a result of the study, the Corporate Computing Board developed a new 
process requiring concurrent design, build, and support activities. While concurrent design, 
build, and support efforts require significant advances in technology (e.g., 100% 3D CAD 
digital product definition and preassembly), an equally important challenge is to make the 
necessary cultural and organizational changes. In the past, processes and organizations 
remained unchanged when automated support tools were developed. However, new 
computing applications could do little of themselves to reduce problems of error and 
rework. Now we are required to document and streamline business, engineering, and 



manufacturing processes before we consider automating them. This is the only way to 
avoid automating wasteful practices or implementing obsolete design requirements [47]. 

Process management is a rubric that encompasses the several methodologies adopted by 
Boeing for improving business, engineering, and manufacturing processes. To implement 
process management, the company has formed many process improvement teams, each 
charged with understanding and streamlining a particular aspect of the business. The teams 
typically go through the following steps: 

 
• Identify and document existing key cross-departmental processes using 

integrated models of the activities, the items flowing through the activities, 
and related entities such as organizations and resources. 

• Establish points of measurement, then determine how to improve the process 
by minimizing defects, reducing cycle time, and eliminating unnecessary 
activities. 

• Support the execution of processes, and monitor performance as part of 
continuous improvement. 

We distinguish process management from process implementation methodologies and 
tools. Process management is targeted toward planned, repeatable, but modifiable business 
processes, regardless of whether automation is being considered. Process implementation 
methodologies, on the other hand, focus on solving a particular instance of a problem (e.g., 
creating a specific piece of software, ordering a part, manufacturing a given number of 
widgets before a particular deadline). They are geared toward successful completion of a 
unique, one-shot process. Our effort is currently oriented toward supporting process 
improvement teams; links to implementation methodologies and tools may be addressed in 
future stages of the project. 

In 1989, we surveyed several process improvement teams to determine their current 
practices and needs. Our findings are summarized in Figure 1, which depicts process 
management as it is typically implemented. Most teams rely on sticky notes for the early 
stages of process documentation. Teams track issues and comments  manually using large 
flip charts attached to the walls of the meeting room. Once there is consensus on the a 
description of the current process, a person who is expert in the use of drawing or CASE 
software creates a diagram of it. Relatively few teams make it past the process 
documentation phase. When they do try to measure the process, they use separate analysis 
and charting programs that are not integrated with the process diagramming tools. 
Sometimes they must key in information more than once in order to exchange data 
between different programs. 
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Figure 1. Process management as usually done. 

To address these problems, we needed to integrate the functions of an automated process 
management system (Figure 2). To manage the complexity of enterprise-wide business 
processes,  we need more than thorough documentation—we must have process 
improvement tools to help us discover how our work can be simplified and streamlined; we 
must have work-flow execution tools operating on ‘live’ process models to support our 
performance of tasks and to facilitate measurement as part of continuous improvement. 

To access, share, and reuse models within different tools or for different applications, we 
need means to translate between them without loss of meaning. A number of standard 
languages, protocols, and interchange formats are emerging [e.g., 17, 66]. The Semantic 
Unification Meta-Model (SUMM) is an effort being undertaken by the PDES Dictionary / 
Methodology Committee [29] to define a formal semantics for such modeling languages. 
An interface between process management tools and model unification capability based on 
standards such as the SUMM specification will provide means for data exchange with 
commercial software (e.g., Excelerator™, IDEF-based tools), internal Boeing tools (e.g., 
Boeing Flow), and repository management systems. The availability of automated 
interchange capability will also reduce barriers to active collaboration and sharing between 
research groups, in the spirit of previous manual efforts such as [60]. 
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Figure 2. Automated process management support. 



Section two will present in general terms how a knowledge acquisition approach can be 
applied to the development of automated tools for process management. We will discuss 
the role and importance of mediating representations, a modeling framework for process 
management, and the architecture of the DDUCKS environment. Section three specifically 
describes eQuality, an application of DDUCKS to problems in process documentation, 
process improvement, and process execution. Section four presents our conclusions. 

2 A Knowledge Acquisition Approach for Process Management 

Our approach to process management support systems springs from our many years of 
work in knowledge acquisition for knowledge-based systems. Over the years, many of our 
views on knowledge acquisition have changed. We used to think of knowledge acquisition 
as something that occurred mainly in the early stages of system development. Now we 
have come to realize that knowledge acquisition tools can assist in formulation, validation, 
verification, and maintenance throughout the lifetime of a knowledge-based system. Thus, 
it might be said that researchers are attempting to do for knowledge engineering what 
CASE is attempting to do for traditional software engineering [10, 30, 63]. Indeed, as the 
scope of application of knowledge acquisition work has broadened, lessons learned from 
the development of traditional knowledge-based systems have been applied to hybrid 
systems that combine conventional and knowledge-based components [e.g., 8. 14, 15, 32l. 
Gaines [31] has suggested the term knowledge support systems for knowledge acquisition 
tools capable of targeting wider applications such as information retrieval, education, 
personal development, group decision support, and design rationale support. We think that 
the knowledge acquisition perspective has much to offer for many kinds of problems. 

In sections 2.1 and 2.2, we describe some aspects of the knowledge acquisition perspective 
that have had an influence on eQuality. In particular we discuss knowledge acquisition as a 
modeling activity, and examine the role of mediating representations in the process of 
model formulation and refinement. Section 2.3 presents the system architecture and 
explains how it provides for reusability of tools, models, and representations. 

2.1 Knowledge Acquisition as a Modeling Activity 

Recent work in knowledge acquisition has emphasized that the creation of knowledge 
bases is a constructive modeling process, and not simply a matter of “expertise transfer” or 
“knowledge capture” [26]. For this reason, use of the term conceptual modeling has begun 
to replace the term knowledge acquisition to describe many of the activities in this field. 

From a constructivist perspective, a model is not a ‘picture’ of the problem, but rather a 
device for the attainment or formulation of knowledge about it [27, 50]. Often, the most 
important outcome of a knowledge acquisition project is not the resulting knowledge-based 
system, but rather the insights gained through the process of articulating, structuring, and 
critically evaluating the underlying model [64]. From this, we infer that the value of the 
knowledge acquisition effort may derive not simply from a final ‘correct’ representation of 
the problem, but additionally from our success in framing the activity as a self-correcting 
enterprise that can subject any part of the model to critical scrutiny, including our 
background assumptions [79]. From this standpoint, the crucial question for knowledge 
engineers is not “How do we know the model is correct?” (every model is an incorrect 



oversimplification); but rather “How useful is the model (and the modeling process) in 
facilitating our understanding of the domain?” 

Our understanding of models and the modeling process entails a life cycle perspective on 
knowledge acquisition. Modeling does not culminate at some arbitrary point in 
development, but rather extends throughout the life of the system. It follows that modeling 
tools must support the gradual evolution of the model through numerous cycles of 
refinement. 

Each phase of development activity imposes its own requirements and difficulties. Serious 
problems of modeling can often be traced directly to the inadequacies of the particular 
knowledge representations used at a given stage of development. Many tools are limited in 
both their repertoire of modeling representations and their support for evolution and 
transformation of representations. The ideal conceptual modeling tool would support a 
smooth transition of the model from an easily communicated, relatively unconstrained 
statement of the problem to an unambiguous specification of design. A number of changes 
in representation may be required to accompany successive stages in model construction: 
from mental models to increasingly refined conceptual models via elicitation and analysis 
techniques, and eventually, from these highly elaborated models to an operational 
knowledge base via formalization and implementation procedures [38]. 

Unfortunately, the emphasis given to rapid prototyping in traditional accounts of 
knowledge acquisition, along with the faulty notion that ‘the production of working code is 
the most important result of work done’, often leads to the premature encoding of 
knowledge in an implementation formalism associated with a specific performance 
environment [10]. The unfortunate result is that no independent description of the model 
will exist other than the rule base itself and possibly some glossaries in the help 
information of the system [49]. 

The problems of premature encoding of knowledge in implementation-driven 
representations have spurred efforts to develop other representations that more adequately 
support the early stages of conceptual modeling. We call these mediating representations. 

2.2 Mediating and Intermediate Representations 

Mediating representations (e.g., repertory grids, network diagrams) are designed to reduce 
the problem of representation mismatch, the disparity between a person’s natural 
description of the problem and its representation in some computable medium [43]. They 
provide a bridge between verbal data and typical knowledge representation schemes such 
as production rules [12, 49]. Work on mediating representations for conceptual modeling 
parallels work on visual programming languages for software engineers [e.g., 40]. 

The term mediating representation has various interpretations in the literature, however we 
take it to “convey the sense of… coming to understand through the representation” [49, p. 
184]. A crucial feature is that mediating representations should be “easily readable by 
those who were not involved in the original development programme…” (21, p. 34). This 
is essential, since executable knowledge bases are seldom organized for direct use by 
humans, but instead for the convenience of the reasoning mechanisms of the performance 



environment. The design of a mediating representation, on the other hand, should be 
optimized for human understanding rather than machine efficiency. 

Work on mediating representations aims to improve the modeling process by developing 
and improving representational devices available to the expert and knowledge engineer. 
Several automated conceptual modeling tools have incorporated effective mediating 
representations [13]. These tools to adopt one of two approaches. Either they contain 
interfaces that bear a close resemblance in appearance and procedure to the original manual 
task—for example, cancer-therapy protocol forms in OPAL [65] and engineering 
notebooks in vmacs [55], or they rely on some easily-learned, generic knowledge 
representation form—for example, repertory grids or directed graphs [7, 23, 28, 37, 52]. 

Over time the semantic gap between modeling systems and performance systems has 
widened dramatically. A distinguishing characteristic of some of the newer tools is the 
degree to which they promote the use of multiple perspectives on the same information. 
They also exemplify the push toward informal textual, graphical, and multimedia forms of 
knowledge representation [9, 23, 34, 35]. As new mediating representations have increased 
the richness, complexity, and subtlety of the knowledge elicited by automated conceptual 
modeling tools, a requirement has emerged for intermediate representations. Intermediate 
representations can integrate the diverse perspectives presented by the mediating 
representations. They help bridge the gulf between human participants and the 
implementation formalism required by the performance environment. In addition, 
intermediate representations facilitate the integration of conceptual modeling and 
performance systems, allowing rapid feedback throughout the process of system 
development [e.g., 36, 71, 59]. 

Figure 3 depicts a three-schemata approach to knowledge representation [27]. Mediating 
representations serve as external schemata, the intermediate representation corresponds to 
the conceptual schema, and the knowledge base or database implements an internal 
schema. The external schemata are optimized for communication, the conceptual schema 
for semantic completeness, and the internal schema for performance. Obvious similarities 
will be seen between our suggested architecture for conceptual modeling tools and the 
proposed ANSI-SPARC three-schema model for data management. The definitions for the 
three schemata given by van Griethuysen and King (77) provide a good summary of this 
perspective: 
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Figure 3. Three-schemata architecture. 

“The… conceptual schema controls what is described in the information base. 
The conceptual schema controls the semantic meaning of all representations, that 
is, defines the set of checking, generating, and deducing procedures of the 
information at the conceptual level in the information system. 

The external schemata describe how the users wish to have the information 
represented. The external processor interfaces directly with the users and 
coordinates their information exchange. 

The internal schema describes the internal physical representation of the 
information… The mapping between the external schemata and the internal 
schema must preserve meaning as defined by the conceptual schema.” 

This approach allows views containing mediating representations to be coupled to the 
underlying intermediate representation so that any changes made to one view may be 
immediately reflected in all related views. Knowledge analysis and performance tools may 
be similarly designed to exploit the integration of information at the intermediate level. 

 

2.3 An Architecture for Reusability of Tools, Models, and Representations 

Because building conceptual modeling tools is labor intensive, their development can 
usually be justified only if they can be easily applied to more than a single application. 
Conceptual modeling tool developers interested in deriving the most benefit from their 
tools may look for areas consisting of several problems that can each be characterized by a 
general task model [6, 53]. Conceptual modeling tools can then be created that both fit the 
general task model and are tailorable to several specific problems. 

Many conceptual modeling tools derive their power from relying on a well defined 
problem-solving model that establishes and controls the sequences of actions required to 
perform some task [6, 43, 51, 53]. For example, SALT [61] is based on a method for 
design called “propose-and-revise”, while MOLE [25] uses a method of heuristic 



classification called “cover-and-differentiate”. More recently, researchers have developed 
approaches that allow the knowledge engineer to configure systems from one or more 
problem-solving mechanisms [13, 62, 66, 69]. The problem-solving mechanisms define the 
kinds of knowledge applicable within each step, thereby making explicit the different roles 
knowledge plays. Having defined these roles, developers can design modeling tools 
appropriate to each kind of knowledge. 

Musen [65] was one of the first to present an explicit, general approach to creating 
tailorable conceptual modeling tools. Conceptual modeling tools are tailored using a meta-
level tool to edit a domain-independent conceptual model. The meta-level tool, PROTEGE, 
provides a system to generate knowledge editors tailored for various classes of treatment 
plans. Physician experts can then use the knowledge editors created by PROTEGE to 
develop knowledge bases (e.g., OPAL) that encode specific treatment plans in their 
medical specialty; the resulting systems (e.g., ONCOCIN) could then be used in turn by 
attending physicians to obtain therapy recommendations for a particular patient. 
PROTEGE-II generalizes the PROTEGE architecture to allow for alternate problem 
solving methods and interface styles [68, 69]. 

Besides the reuse of task models, a number of researchers have emphasized the importance 
of defining libraries of ontologies, with the goal of increasing knowledge base reusability 
[45, 57, 66, 73]. Alexander, Freiling, Shulman, Rehfuss, and Messick [4] introduced 
ontological analysis as a conceptual modeling technique for the preliminary analysis of a 
problem-solving domain (see also 3, 81]. This kind of analysis results in a rich conceptual 
model of static, dynamic, and epistemic aspects of the problem. The model can be 
extended by designers and users of the system and applied to problem-solving. Well-
designed conceptual models can also be shared or reused by different tools and 
applications. 

Our objective is to increase reusability by generalizing Musen’s approach. We have 
implemented an “open architecture” integrating environment that allows for a high degree 
of connectivity among hardware and software components. This environment is called 
DDUCKS (Decision and Design Utilities for Comprehensive Knowledge Support; 14, 
15]1. It is useful to think of DDUCKS in terms of four “layers” of functionality: 
workbench, shell, application, and consultation (Figure 4)2 . Starting with any layer in the 
system, a user can produce a set of tools, models, ontologies, and representations that can 
be used to assist in configuration of a more specialized system at the layer below. 

The DDUCKS workbench consists of five major elements: 
 

                                                             

1 Either the first or second D in DDUCKS is silent, depending on whether one using the tool in a 
decision or design context. 

2  The four layers are simply a convenient abstraction that seem to apply to a number of applications. In reality, 
application configuration and tailoring is a continuous rather than discrete process which admits an unlimited 
number of “layers”. 



•  methodology-independent problem-solving task models (e.g., heuristic 
classification, constraint satisfaction); 

• generic interaction paradigms (see section 3.1 below; e.g., graph view, matrix 
view, various widgets); 

• a methodology-independent ontology (a specification of the abstract 
conceptual schema; e.g., generic object types such as entity, relationship); 

• application-configuration process models (i.e., model of how to configure the 
workbench for a particular application such as process management, decision 
support, or design); 

• a standard library of inference types and functions (e.g., mathematical and 
logical mechanisms that implement problem-solving, analysis, or simulation 
procedures). 

An instance of a shell (e.g., Axotl II), created by using the conceptual modeling facilities 
generated by the workbench, may contain: 

 
• methodology-specific problem-solving task models (e.g., maximization of 

expected utility across decision alternatives, hierarchical constraint 
satisfaction using extended AND-OR graphs, process optimization through 
event-based simulation) 

• methodology-specific mediating representations created out of the 
combination of generic interaction paradigms with a particular semantic and 
possibly computational interpretation of the elements (e.g., process views, 
influence diagrams, repertory grids); 

• a methodology-specific ontology (a specification of the schema itself; e.g., 
activities, performers; decision and chance nodes; elements and constructs); 

• methodology-specific model-building process models (i.e., knowledge about 
how to acquire application-specific knowledge within the context of a 
methodology); 

• methodology-specific extensions to the inference and function library. 
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Figure 4. Four layers of functionality facilitate reusability (inspired by figure from Musen, 1989). 

An instance of an application (e.g., eQuality), created by using the conceptual modeling 
facilities generated by the shell, may contain: 

 
• application-specific problem-solving task models; 
• application-specific mediating representations (e.g., form-filling interfaces 

tailored to R&D investment decision makers, engineering process modelers, 
or space station designers that may be used in place of influence diagrams, 
generic process views, or grids); 

• an application-specific ontology (extensions to the schema that become the 
modeling primitives for the application; e.g., go/no-go investment decision 
nodes, technical risk chance nodes; airplane design-build activities; 
alternatives and criteria); 

• application-specific model-building process models (i.e., knowledge about 
how to conduct a consultation with clients such as R&D investment decision 
makers, airplane design-build process improvement team members, or space 
station designers); 

• application-specific extensions to the inference and function library. 

An instance of a consultation, created by using the consultation facilities generated by the 
application, may contain: 

 
• situation-specific problem-solving task models (e.g., a model for a particular 

business, design, or decision-making process). 



• situation-specific mediating representations (e.g., text and graphical 
annotation of views on the model); 

• situation-specific model components (e.g., decision and chance nodes for a 
particular project decision model; activity and entity instances for a particular 
enterprise model; alternatives and criteria for a particular design decision); 

• Situation-specific facts and assertions (e.g., particular information about a 
situation); 

• situation-specific functions and inferences. 

The complete situation-specific model represents the unique characteristics of a particular 
problem and comprises all the information mentioned above. This model is formulated, 
evaluated, and analyzed during the consultation to produce recommendations for action or 
for further model refinement. 

3 eQuality: An Application of DDUCKS to Process Management 

eQuality (enhanced Quality) is an application ofDDUCKS designed to support the 
enterprise integration and process improvement through the application of advanced 
modeling, analysis, and simulation tools. Process management methodologies provide a 
way to specify design activities and products as part of an enterprise model. The enterprise 
model captures the activities, resources, and organizational context of design from the 
process owner’s point of view. It can also represent models of the structure of the products 
of design, for analysis and simulation purposes. Figure 5 depicts the components of 
eQuality as a set of project organization and meeting tools and six functional modules. 

In the following three sections, we will describe the process documentation, process 
improvement, and project organization capabilities of eQuality. 
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Figure 5. Six functional modules and a set of project organization and meeting tools support 
documentation, improvement, and execution phases of the life cycle. 

3.1 Process Documentation.  

Figure 6 is a view of knowledge representation in DDUCKS . The intermediate 
representation in DDUCKS (i.e., the conceptual model) consists of entities, relationships, 



and situations as the primary concepts, and domains, properties, and constraints as 
secondary concepts. We are using an enhanced version of CODE version 4 as the 
underlying semantic representation language [58, 74, 75]. We have derived our general 
taxonomy for conceptual modeling from Tauzovich and Skuce, with extensions supporting 
inferencing, analysis, and simulation. 

CODE provides a rich, paradigm for the definition of knowledge level concepts. A 
collection of integrated tools support the important and frequently overlooked aspects of 
conceptual, ontological, and terminological analysis. Our extensions to the representation 
allow the system to share several features of Sowa’s [76] conceptual graphs, and Gaines’ 
[33] KRS, which interpret taxonomic and entity-relationship structures in terms of typed 
formal logics. A first order logic system and a simple natural language system, allow 
various types of syntactic and semantic checks to be performed, if desired. A 
comprehensive lexicon allows references to concepts to be automatically maintained and 
quickly accessed Default facilities for analysis and inferencing over conceptual structures 
can be augmented by users by means of an integrated scripting and query language. 

User-interface management systems (UIMS) are becoming an essential part of interactive 
tool development and end-user tailoring [48]. We are extending the capabilities of a 
Smalltalk-80-based direct-manipulation user-interface builder to build a DDUCKS UIMS, 
called Geoducks3 [56]Geoducks relies on the Smalltalk-80 MVC (model-view-controller) 
concept for managing different perspectives on data ([2, 42, 54]. The MVC approach 
provides an effective way to factor out the data in an underlying model from the data in 
dependent views, so that new views can easily be added to an existing model. A 
sophisticated dependency mechanism assures that changes to the model made within one 
view are immediately reflected in all related views. Class hierarchy mechanisms in 
Smalltalk-80 allow generic views of a certain sort to be easily specialized for different 
purposes. This, in conjunction with additional capability in Geoducks, has allowed us to 
define many different views on similar aspects of the model, as well as several similar 
views on different aspects of the model. 

The six views surrounding the intermediate representation correspond to the generic user-
interface interaction paradigms that are implemented as abstract “pluggable” view classes 
(Krasner & Pope, 1988; Adams, 1988a, b). These views are generic in the sense that they 
define the graphical form for the representation, but the form has no underlying semantics. 
Within eQuality, various configurations of these interaction paradigms can be called up in 
sketchpad mode to record free-form graphical and textual information. For example, 
individuals and groups can capture back-of-the-envelope drawings, agendas, issues, action 
items, requirements, and other information pertinent to their task. While not part of the 
formal model, users can link elements created in sketchpad mode to elements in other 
views in hypertext fashion. 

                                                             

3 Pronounced “gooey-ducks”. 
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Figure 6. The intermediate representation in DDUCKS, surrounded by examples of generic 
interaction paradigms, and mediating representations. 

By combining one or more of these generic interaction paradigms with a semantics defined 
in the intermediate representation and (for some representations) the problem-solving 
method, methodology-specific or application-specific mediating representations are 
defined. Mappings are defined between graphical actions in the model views and 
operations on logical entities, relationships, and properties in the intermediate 
representation. For example, influence diagrams combine a graph view with the concepts 
of decision, chance, and value nodes and the problem-solving method of maximization of 
expected utility across decision alternatives. Trade study matrices (a methodology-specific 
kind of repertory grid) are built out of a matrix view, the concepts of alternatives, criteria, 
and ratings, and a heuristic classification problem-solving method. Process views combine 
a graph view with the a formal definition of activities and relationships between them. 
Type definition views allow the users to extend the built-in ontology. Configured with 
semantic information, these mediating representations can operate inmodel mode, 
portraying different perspectives on the formal conceptual model in the intermediate 
representation. By virtue of the Smalltalk-80 model-view-controller paradigm, consistency 
is continuously maintained for all model views portraying the same version of the 
conceptual model. 

3.2 Process Improvement 

In parallel with development of process documentation tools, we are building analysis and 
simulation capability supporting process improvement. Simple drawing tools typically 
available to process improvement teams provide no support for analysis and simulation. 
Traditional analysis and simulation tools support alternatives analysis and richer models, 
but require a significant amount of training and data entry to achieve realistic results. 
eQuality is unique in that it addresses the needs of individuals who know a lot about their 
domain, but do not know very much about formal modeling. People do not have to worry 
about the simulation when they are creating various diagrams. However when they are 
ready, the system can use the information contained in the diagrams to support analysis and 
simulation. 



Analysis tools within eQuality support the identification of bottlenecks, cost drivers, and 
the restructuring of processes to exploit concurrency. In addition to formal analysis, built-
in knowledge-based system tools can provide support for heuristic analysis. Users can 
implement analysis metrics such as cycle time, defects per unit of output, and financial 
parameters using attribute and function editors that make use of a simple scripting 
language and extensible function library. Using MANIAC, we have developed an initial 
‘hot link’ capability with Microsoft Excel™ that will increase the power and flexibility of 
the analysis tools. 

Discrete-event simulation tools build on the analysis capabilities to provide insight on the 
dynamic behavior of the enterprise. Users can define active monitors during a running 
simulation to display results. The monitors selectively respond to changes in the model and 
dynamically display the results in an appropriate way. For example, a textual event monitor 
would print out a textual message that described a simulation event, while a graphical 
monitor such as a histogram or bar gauge might plot the number of occurrences of an event 
or the value of a parameter. 

3.3 Process Execution 

An eventual goal is to couple the streamlined enterprise models to the enterprise itself, 
supplying the semantic transformations that map the models to the enterprise and 
incorporating feedback from the enterprise concerning the actual execution of the models. 
We envision integrated process management technology that will someday enable us to 
move from the current situation where process documentation, if it exists at all, is 
represented on paper in three-ring binders and control room wall charts; to the near term 
where models of important processes can be available online in a form amenable to 
analysis and simulation; to the vision where ‘live’ process models are woven into the fabric 
of the way we perform out business. Enterprise models will never be kept up to date 
properly when they can only be maintained by modeling experts. Enterprise models will 
never be consistent with the way processes are actually performed until the model actually 
becomes executable. 

We are currently prototyping future possibilities for process execution. To support this, a 
future release of eQuality could produce a form of the enterprise model that can be fed into 
planning, scheduling, and project management software and linked to relevant data and 
applications. Process instances could be created each time a process is executed, with 
status maintained in a repository. Process participants could receive knowledge-based help 
in carrying out their tasks as the process is executed. An intelligent agent could monitor the 
activity of the process, notifying process participants of exception conditions and helping 
to route data associated with the task. Decision analysis capability could help process 
participants deal with decisions involving high stakes, difficult tradeoffs, or critical 
uncertainties or risks. Data collected by monitors operating during the execution of the 
process could be fed back into eQuality and used as the basis for further process 
improvement. 

3.4 Project Organization and Meeting Facilitation Tools 



Creating a description of an enterprise typically involves the collection, organization, and 
refinement of a large body of documentation that may include reports, transcripts, 
glossaries, photographs, diagrams and various representations of formal models. Process 
improvement team members draw from this evolving corpus as they construct an enterprise 
model. Effective documentation is more useful during operation of the process before than 
during the process improvement phase [9]. If they are effectively designed and kept up-to-
date, the sketchpad documentation and the enterprise model may later be reused for 
operations, diagnosis, maintenance and as the basis for improving similar processes in the 
future. However, the documentation currently produced by process improvement teams is 
often shallow, scattered, obsolete, incomplete, contradictory, or unintelligible, making 
maintenance and reuse of the knowledge difficult. 

 
Figure 7. Screen snapshot of the project notebook facility. 

The volume and diversity of information that can be represented in eQuality drives a 
requirement for ways to manage, organize, and link that information. A project notebook  
facility helps team members collect and organize the diverse materials associated with a 
particular process improvement project (Figure 7). It also helps manage changes between 
different versions and views of the model as it evolves. The project notebook can assist in 
planning and modeling activities throughout the life of the project. Using project notebook 
templates, groups can tailor the contents of the boiler plate project notebook to be 
consistent with their own preferences for accessing, viewing, and using the information. 
For example, a process improvement team’s blank notebook can come pre-configured with 
information about organizational standards (e.g., default set of concept types and 
relationships, standard icons and terms for concepts, reporting forms) and procedures (e.g., 
required steps in a project plan), just as a real notebook could be pre-loaded with labeled 
dividers and forms. In addition to its obvious use in managing information about the 
enterprise model and views, the project notebook supports the team as a simple computer-
supported meeting facilitation tool and as a form of group memory. 



3.5 Project Status 

eQuality was originally implemented within a version of a Boeing-produced shell called 
Axotl [11, 14, 15] Axotl was developed on the Apple Macintosh and runs on all platforms 
that support ParcPlace Smalltalk-80 (e.g., Sun3 and SPARCstations, Apollo workstations, 
Hewlett-Packard series 300 and 400 systems, IBM '386 compatibles, IBM RS/6000, 
DECstations). From March to December 1991, a version of eQuality, containing sketchpad 
tools, project organization tools, limited enterprise modeling capability, and a set of 
prototypical analysis and simulation tools was evaluated at several sites within Boeing. 
Applications included finance, concurrent engineering, manufacturing, corporate internal 
audit, continuous quality improvement, and information system requirements analysis. 
Customers at these evaluation sites have used the software in each of their unique settings, 
and have provided valuable comments to guide future development directions. Based on 
results of the evaluation, we designed and developed a completely new version of the Axotl 
II shell as a host for general release of eQuality within The Boeing Company. The first 
general Boeing release of the documentation capability was made in April 1992. 
Development and evaluation of analysis and simulation capability will follow. 

As part of a Boeing project called DIS (Design of Information Systems; Benda, 1991), we 
explored how knowledge acquisition and decision support tools can work cooperatively 
with one another and with commercial applications such as spreadsheets, databases, or 
hypermedia software. We described how such integrated tools could be used for 
applications such as group decision support in a computer-supported meeting environment 
[8]. We have developed a facility called MANIAC (MANager for InterApplication 
Communication) that supports intelligent communication and cooperation between 
applications. Plans for coordination among applications are modeled and executed using 
integrated planner capabilities in Axotl, while MANIAC provides the infrastructure for the 
actual message passing. Originally implemented as a driver in the 6.x version of the 
Macintosh operating system, MANIAC has been updated to take advantage of new 
interapplication communication protocols in version 7.0 (Apple events or Mac DDE for 
Microsoft applications). An interface to TCP/IP has been built so that we will eventually be 
able to transparent support for heterogeneous platforms in a networked environment. 

4 Conclusions 

We attribute much of the initial success of eQuality to the knowledge acquisition outlook. 
In focusing on process management rather than the development of a traditional 
knowledge-based system, we have seen even more acutely the need for modeling tool 
developers to attend to the ‘acquirability’ and reusability aspects of design. We conclude 
with the words of David Parnas on traditional software specification, which apply equally 
well to knowledge acquisition: 

“The word ‘formal’ has been commandeered by a bunch of people who feel that 
it isn’t formal if human beings can read it… I have fallen into the same trap. I 
could write something and I could read it but my students couldn’t. And they 
could write something and they could read it but I couldn’t. And, not only that, 
but neither of us wanted to read it. … Therefore I have worked on new ways to 
write specifications so that people could read it… You can’t imagine how 



overjoyed I was when a pilot told me we had made a mistake with the A7 
[avionics software specified in an earlier project] — not because we made a 
mistake but because the pilot could tell us.” [67] 

It is our hope that a continued discussion and work on extending knowledge acquisition 
concepts and tools to additional areas of application will contribute to better 
communication and shared understanding between participants in system development. 
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